

Lowering Truck Rolls on Installations & Service Calls

- Increased QoS

Presenter: Tony Holmes

SCTE Iowa Heartland Chapter

Technical Session Overview

- Troubleshooting the Triple Play Services
- Digital Testing
- Return Path Analysis
- Automated Testing
- Home Installation Process Certification
- Benefits of Certified Installation/Service call
- Live Demonstration

Goal - Reduce Repeated Truck Rolls

Planning only 1 trip no putting out fires

Testing, Measuring, Documenting Historical Data - Results

Challenges faced by the Customer

Poor Picture Quality

Slow Internet

Dropped calls

Slow Transmission Network Challenges

Challenges faced by the Technician

- Increased SD and HD services
- Higher Demand for QoS and Reliability
- More Competition from Telecom & Others
- Must Reduce Truck Rolls & Service Calls
- Additional Products and CPE to learn
- Operational Costs are greater
- Enhancing Customer Experience

Challenges with Corporate Objectives

- Lowering Repeated Truck Rolls
- Lowering Customer Churn Rate
- Documenting Installation & Service Visit
- Achieving Automated Test Results
- Accessing Historical Data
- Preserving Network Reliability/Performance & QoS
- Improve Customer Satisfaction/Viewer Experience

What is Home Installation Process (HIP)

- Verifying the health of the subscribers network
- Taking corrective actions to ensure network performance
- Creating a birth certificate for future references

Troubleshooting the Triple Play Step by Step Procedures

System Scan

- Provides graphical view of the entire channel plan based on the selected channel table.
- Both Analog and Digital channels are measured
- Fast visual snapshot of Analog, Digital, or DOCSIS carrier levels.
- Digital channels should be 6 to 10 dB below Analog channels
- DOCSIS/Digital channel levels should range between -8 to +7 dBmV

Single Channel Digital Measurement

Digital Signal

- Average power of QAM
- MER
- BER: Pre FEC and Post FEC
- Pre/Post Errored Seconds
- Severely Errored Seconds

The Verification Experts

QAM Overview

What is QAM?

- QAM stands for Quadrature Amplitude Modulation.
- A scheme that transmits data by changing the amplitude of two carrier waves
- The two carrier waves are out of phase with each other by 90 degrees
- Each carrier represents half the transmitted symbol.
- Multiple levels of amplitude & phase modulation
- Digital Cable uses QAM to transmit signals two major QAM schemes are;
 - 64QAM which has a data throughput around 28 Mbps
 - 256QAM which has data throughput of 38.8 Mbps

Modulation Error Ratio (MER)

Modulation Error Ratio (MER)

- Measures the "signal-to-noise ratio" (SNR) in a digitally modulated carrier
- Expressed in dB, indicates the system margin available before a failure can be expected
- Considers amplitude, phase noise and other impairments on the signal
- Is a direct measure of modulation quality and is linked to the bit error rate of signal

A large "cloud" of symbol points means low MER this is not good!

A small "cloud" of symbol points means high MER this is good!

The Verification Experts

C/N vs MER/SNR

Carrier-to-Noise (C/N) ratio

- Used in analog systems measures ratio of peak video carrier power over the noise in the channel, over the system bandwidth expressed in dB.
- Can be performed on digital signals, but does not provide a complete picture.

MER and SNR

- Used in digital systems however the terms "SNR" and "MER" are often used interchangeably
- MER is digital complex baseband signal-to-noise ratio (SNR) and is the ratio, in dB, of average symbol power to average error power.

Constellation Display

Constellation display

- Provides a graphical view of the demodulated QAM signal.
- Allows quick identification of impairments such as gain compression or IQ imbalance.

The visual appearance of the constellation can be used to isolate and troubleshoot

problems.

Measu Single	_			<mark>1</mark> iro ∨	•	
SLM			Constellation			
CH#	63	459.00	Ch Na	me	D2B1	
Level	5.0	dBm∀	Adj		N/A	
PRE	<1.00 e -9		POST	<1.00 e -9		
PRES	0		POES	0		
SVES	0		MER 3		8.2 dB	
•	2 000				1	

Constellation Diagram

Quadrants/Boxes

- Each box in the diagram contains one symbol
- 64QAM: 6 bits per symbol, thus 64 boxes
- 256QAM: 8 bits per symbol, thus 256 boxes

Decision Boundaries/Build-Up

- Each location on the constellation is framed by decision boundaries
- If the signal falls within these boundaries, the correct data will be received
- If it falls in an adjacent area, the data will be in (bit) error
- Locations on the constellation build up over time

Purpose

 Shape and distribution of dots are indicative of signal impairments and help you interpret and understand QAM Modulation related problems

Digital vs Analog carriers Spectrum

Analog

- Video & two audio channels are modulated in three separate frequencies in a 6 MHz bandwidth.
- Transmitted at different levels. Normally, a video channel is about 10dB higher than the audio channels.
- Signals are in analog nature, therefore, more resistance to noise.

Digital

- Video and Audio signals are digitized, then modulated (QAM16/64/256), and transmitted in a 6MHz band
- Digital symbols (bits) are embedded in the Haystack.
- Noise can affect the digital bit streams
- FEC (forward error correction) is used to correct errors caused by noise

Digital vs. Analog carriers Noise Impact

Effect of noise on Analog Systems (Gradually Poorer C/N)

Effect of noise on Digital Systems (Gradually Poorer MER)

- Noise has little effect on digital signals until the system fails completely commonly referred to as the "cliff effect"
- When a minimum signal quality (Max bit error rate i.e. Post-FEC error rate) is reached, the digital decoder (QAM demodulator) is no longer able to recover the digital bit stream.

Bit Error Rate (BER)

What is BER?

- Major indication of system health
- As data is transmitted some of the bits may not be received correctly
- The more bits that are incorrect, the more the signal will be affected

BER Definition

- BER is defined as the ratio of the number of wrong bits over the number of total bits.
- BER is displayed in Scientific Notation.
- The more negative the exponent the better
- >1.0E-7 Pre-BER is the minimum for an installation

Typical Problems

- FEC can typically correct errors that are spread out due to noise problems
- FEC may not be able to correct errors that are grouped due to intermittent problems such as ingress or loose connectors.

Forward Error Correction (FEC)

What is FEC?

- The FEC process adds information to each packet in the transport stream, to enable the correction of transmission errors.
- Additional data is generated using Reed Solomon encoder calculated from the original data stream before transmission
- Using the same Reed Solomon decoder at the receiving end, bit errors can be detected which is called Pre-FEC errors
- By going through the error correction algorithm, some Pre-FEC errors can be corrected.
- When Pre-FEC errors become significant and some errors cannot be corrected, they are termed Post-FEC errors
- Post-FEC errors cause poor TV signal quality and/or Internet data retransmission
- Since analysis can be made on live data, this is the method recommended for non-intrusive in-service bit error ratio estimation.

Adaptive Equalization

- Most Receivers have internal Adaptive Equalizers
 - Its important to measure a signal the way a real receiver would
- Adaptive Equalizer may be required for QAM symbol lock
 - Some signals cannot be measured without equalization.
- Valuable Troubleshooting tool
 - Distinguish between linear gain/phase errors and non-linear distortion.
 - Measure real systems while in service.
 - Quantify amount of stress put on receiver's equalizer.

Acceptable MER

- General Operating Guidelines (MER)
 - 64QAM set top converters usually require >23dB MER to operate
 - Allow a margin of 3 or 5dB for system degradation
 - 256QAM set top converters usually require >28dB MER to operate
 - Allow a margin of 3 or 5dB for system degradation
 - 256QAM picture tiling begins around 28dB MER
 - "Digital Cliff" crash threshold point
 - 23dB for 64QAM
 - 28dB for 256QAM
 - A good MER is usually around 33dB or higher for 256QAM at customer device

MER TARGET - THE "CLIFF" EFFECT

What is The "Cliff Effect"?

MER/BER TARGET - THE "CLIFF" EFFECT

Operating margin Zone

Risk Zone **RS-FEC**

Crash Zone

Upstream	16 QAM	>22dB	22dB - 20dB	<17dB	Obje	ctive
UP/Downstream	64 QAM	>28dB	28dB - 26dB	<23dB	P- BER	CER
Downstream	256 QAM	>33dB	33dB - 31dB	<28dB	>1 x10 ⁻⁸	>9 x10 ⁻⁷

Installation Check

- Performs more detailed measurements on pre-defined channels
- Can test multiple channels
- Can test Digital, Analog and Data channels

Tilt Analysis

- Used to check the channel levels at the lowest and highest frequencies
- Level variations across the frequency spectrum are indicative of distortion.
- Efficient tool for balancing distribution amplifiers.
- Useful to identify excessive cable lengths at the customer premises

Spectrum Analysis

- Provides a frequency domain view of the signal
- Convenient way to measure the amplitude of digitally modulated carriers
- Troubleshoot ingress in both Forward and Reverse paths.

Ingress on Digital Video & HSD Services

- Macro Blocking
- ■Freeze Frame
- High speed data problems (Dropped calls)
- Network Transmission Issues (Robotic Voice)
- Slow Consumer Internet
- Business Services Reliability

- Check for ingress on the drop cable
- Use the Max Hold

Spectrum Analysis

Tbl:Romeoville

Loc:Comcast GB

10:15:28

Alternative Maintenance Techniques

High Pass Filters

- Attenuate Return Path Noise and Ingress coming from the subscriber premise
- Isolate entertain services from data services

Return Path Attenuators

- Increase the tap loss in the return path only
- Equalize the loss for subscriber devices and increase isolation between subscriber premise and cable system

Drop Testing

Testing the integrity of the subscriber wiring

HSD Troubleshooting Tips

Activate the Cable Modem

- Check the DS and US power levels
- 'Results' should be displayed

Access to All Downstream Carriers and Upstream

Cable Modem Is Online Verify IP Connectivity

Go to the 'Ping' tab and run a quick Ping test

Throughput Speed Test

≻Home/Cable Mode	em)
Cable Modem	Web/FTP	Ping	Trace Route	VoIP	
Setup		Result			
CableVision Bethp	page1 bethpage1	.speedtest.optimu	ımlightpath.com 65	5.51.228.155	
Status		PASS			
Connection Time		10 ms			
Total Data Transfer Time		5496 ms			Start
PING Test					
Ping Response		PASS 7.300 ms		5	
Throughput		Downloa	ad	Upload	Update List
Current		90.490 Mbps	14.205 N	/lbps	
Min		87.749 Mbps	13.882 N	/lbps	
Max		90.490 Mbps	14.205 N	/lbps	
Average		89.325 Mbps	13.976 N	/lbps	
					Ethernet Tools
Tbl:Standard	Loc:Tap		TP:Off	19-04	I-2013 17:02:19

How To Automate the Home Installation Process (HIP)

Home Installation Process (HIP)

Create Work Orders

- New Installations
- Re-Connections
- Upgrades
- Trouble calls

Home Installation Process (HIP) is the completion of a work order for a job professionally done, properly documented and easy accessible

Auto test Macro functions

Uploading test results to server

- a) Passed/failed or failed only
- b) Referencing work order
- c) Technician ID
- d) Date and time of saved tests
- e) Current location
- f) Other pertinent information

Access to test results

- a) Supervisors
- b) System Managers
- c) Regional directors
- d) Corporate operations

Home Certification / HIP Test Setup

Step 1: Go to the Home Menu and press the 'HIP' Shortcut key.

Step 2: Press the 'New'

Home Certification / HIP Test Setup

Step 3: Select your Home Certification 'Profile'.

Home Certification / HIP Test Setup

<u>Step 5</u>: Select your 'Locator'. This is the location of where you are taking your measurements.

Home Certification / HIP Test In Progress

Each major test portion will report status as the HIP test proceeds.

Home Certification / HIP Test Complete

■ The Home Cert / HIP Test is Complete

Step 8: Press 'Save&Upload' to immediately upload your test results to the R-Server.

Or, Press 'Save' to upload at a later time.

Step 9: Final chance to add some comments before you save.

Press 'OK'

Upload Confirmation Message

Step 10: The final step is the 'Upload completed' confirmation message.

Press 'OK' and the job is done.

Signature Capture in Work Order

Once the job is completed, capture the customer's signature.

Home Installation Process Certification

Benefits of a Certified Installation

- Maintain High Performance of Signals
- Provide High Level of Signals Reliability
- Preserve the Integrity of Drop & Cabling
- Reduce Repeated Truck Rolls
- Reduce Service Calls
- Creating Workforce Database
- Enhancing Customer Satisfaction

Subjective & Objective Procedures

- Drop must be properly bonded
- Proper identification tagging on the drop near tap
- All open ports must be terminated
- Tap pedestal must be locked
- Routing and attachments follow industry installation guidelines
- SDU's with triple play services must use RG-6 or greater for drop
- Outside lines must use weather-sealed compression fittings

Subjective & Objective Procedures

- Drops must be free of splices between pole hooks
- All digital STB must be checked to make sure they are responding
- Inspect the in home network wiring, tighten connectors
- All external drop splitters must be sheltered with a SDU house box
- Egress & Ingress must be conducted on the line and in the home
- Home Certification measurements must be in compliance with company's procedures and standards

Example of Home Installation Process (HIP) Parameters

Location	Pass/Fail	
(Tap)	Minimum	Maximum
Video RF level	+12dBmv	+28dBmv
Delta Video/Audio	10.0dB	22.0dB
Digital level (256 QAM)	+6dBmv	+22dBmv
Digital level (64 QAM)	+2dBmv	+18dBmv
MER (256 QAM)	34dB	
MER (64QAM)	29dB	
Pre BER		1.0E-8
Post BER		1.0E-9
CM transmit level	+40dBmv	+50dBmv
Leakage		20μv/m
Ingress	Depending on US modulation type	

Example of Home Installation Process (HIP) Parameters

Location	Pass/Fail	
(Ground Block)	Minimum	Maximum
Video RF level	+6dBmv	+22dBmv
Delta Video/Audio	10.0dB	22.0dB
Digital level (256 QAM)	0dBmv	+16dBmv
Digital level (64 QAM)	-4dBmv	+12dBmv
MER (256 QAM)	33dB	
MER (64QAM)	28dB	
Pre BER		1.0E-8
Post BER		1.0E-9
CM transmit level	+38dBmv	+52dBmv
Leakage		20μv/m
Ingress	Depending on US modulation type	

Example of Home Installation Process (HIP) Parameters

Location	Pass/Fail	
(Outlet)	Minimum	Maximum
Video RF level	-2dBmv	+14dBmv
Delta Video/Audio	10.0dB	22.0dB
Digital level (256 QAM)	-8dBmv	+8dBmv
Digital level (64 QAM)	-12dBmv	+4dBmv
MER (256 QAM)	33dB	
MER (64QAM)	28dB	
Pre BER		1.0E-8
Post BER		1.0E-9
CM transmit level	+35dBmv	+50dBmv
Leakage		20μv/m
Ingress	depending on US modulation type	

Summary

Repeated truck rolls can be reduced by:

Educating Technicians on Digital Transmission Establishing Corporate Procedures & Standards Achieving Automated Results (Centralized Server) Investing on Effective Test Instrument Tools Accessing Results with Historical Data Embracing the Corporate HIP Process Allowing Personnel to Participate to HIP Program

Demonstration

- Digital Troubleshooting
 - Digital Power
 - BER
 - MER
 - Adaptive EQ

- Return Path Ingress
 - Using the spectrum analyzer
 - How to identify noise/ingress

Thank You

Tony Holmes

Tel: (317) 366-8692

tholmes@veexinc.com

www.veexinc.com

