

Broadband Instruments and Systems

"Maintenance Activities on the Digital HFC Network"

for CCTA Member Companies August 16, 17, 18, 2011 San Juan, Puerto Rico

RILITHIC

Technical Session Overview

- Challenges faced by the technician
- The importance of the parameters which affects QoS
- Implementing a well planned maintenance program
- Understanding the Triple Play
- What tools are available to increase technician efficiency

Session One

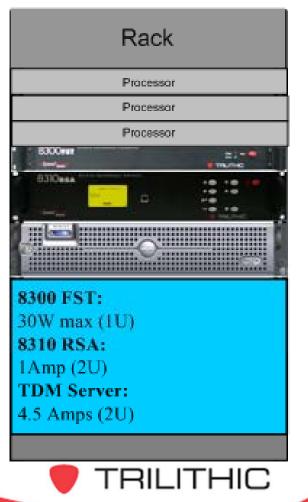
- Downstream/Upstream Testing
- Return Path Monitoring
- Certifying the Return Path
- Work Management Logging
- Generating Reports

Broadband Instruments and Systems

WORK BENCH

8310RSA

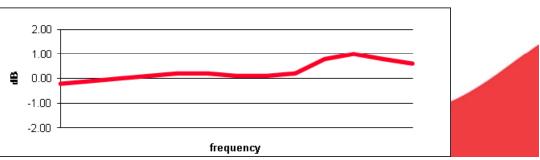
8300FS


Downstream/Upstream Testing

think ahead.

Aligning the Forward Path

Forward Sweep


Forward	Sweep : sv	veep1.plar	ו 🔀
Ref = 6	Ref: 1.sref	Avg Hi	gh 2 dB/div
TP: Test	Point 2		AP: 0 dB
	57.250 MHz, 0.1		Peak 0.4
	25.000 MHz, 0.1		Valley -0.4
	67.750 MHz, 0.0		Delta 0.8
Msg:	•		Avg 4/4
magi	1		nvg Tr T
SAVE REF	CHPLAN	USE REF	

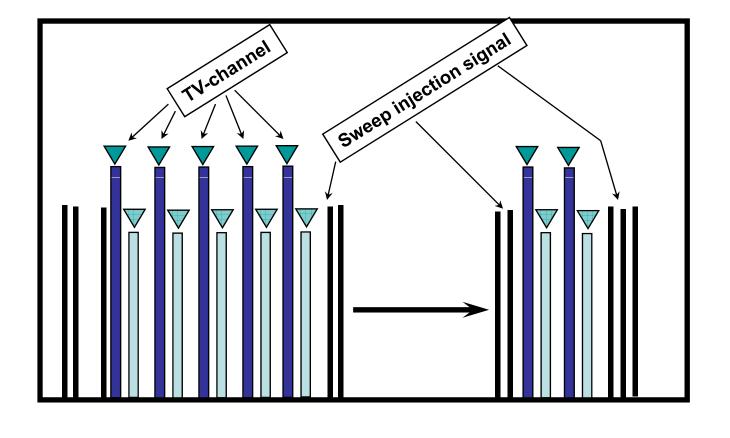
Frequency Response Definition

- System's ability to properly transmit signals from head-end to subscriber throughout the designed frequency range
- "Sweep" tests verify performance to design specifications
- Expected results: n/10 + x = max flatness variation
 - Where n = number of amplifiers in cascade
 - Where x = best case flatness figure (supplied by manufacturer)

TRILITHIC

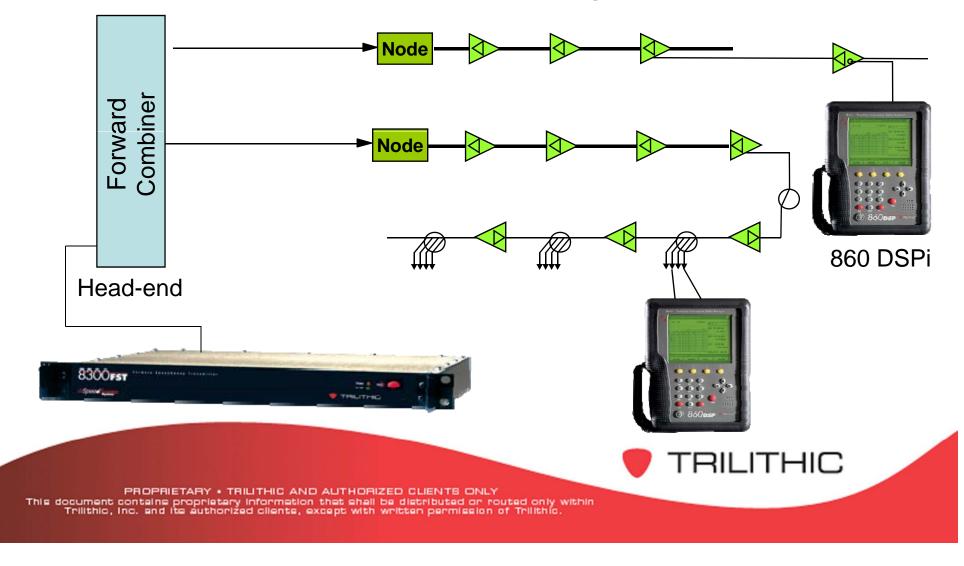
Why Sweep?

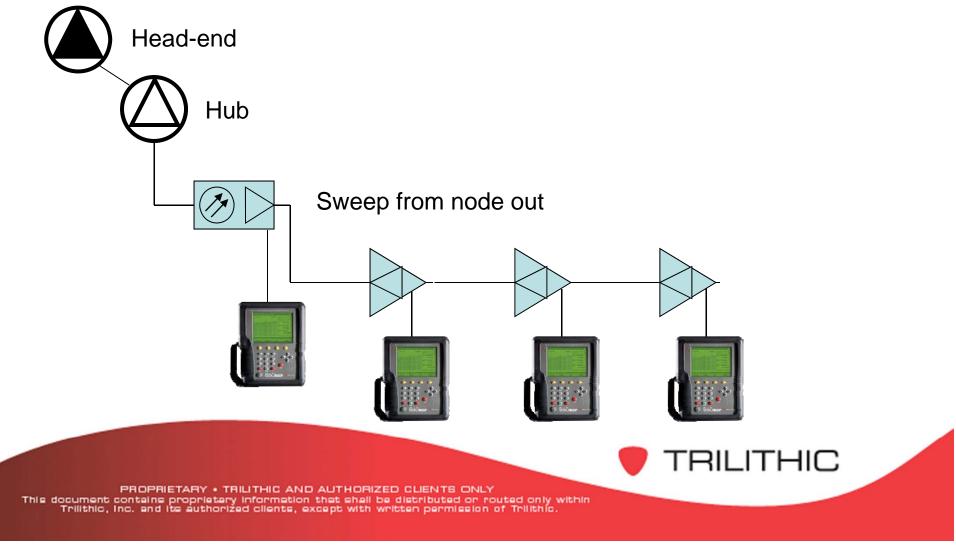
- SpeedSweep makes it easier for technicians to find:
 - Reflections
 - Water Migration
 - Damaged cable
 - Suck-Outs
 - Cable Roll-Off
 - Loose or cracked connectors
 - Craftsmanship errors



Why Sweep?

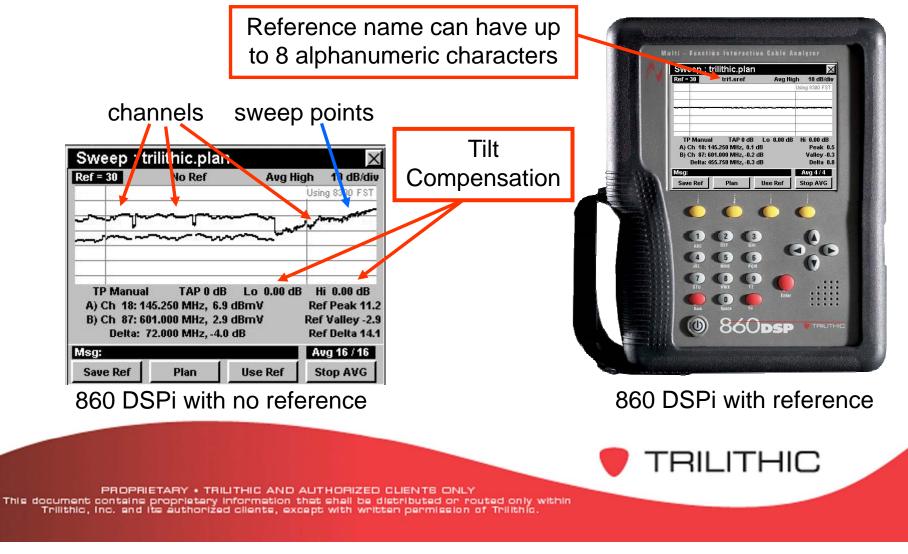
- Allows a reference to be stored
 - Sweep makes it possible to divide the HFC plant into network sections and test its performance against individual specifications
- Can measure in unused frequencies
 - This is most important during construction and system overbuilding



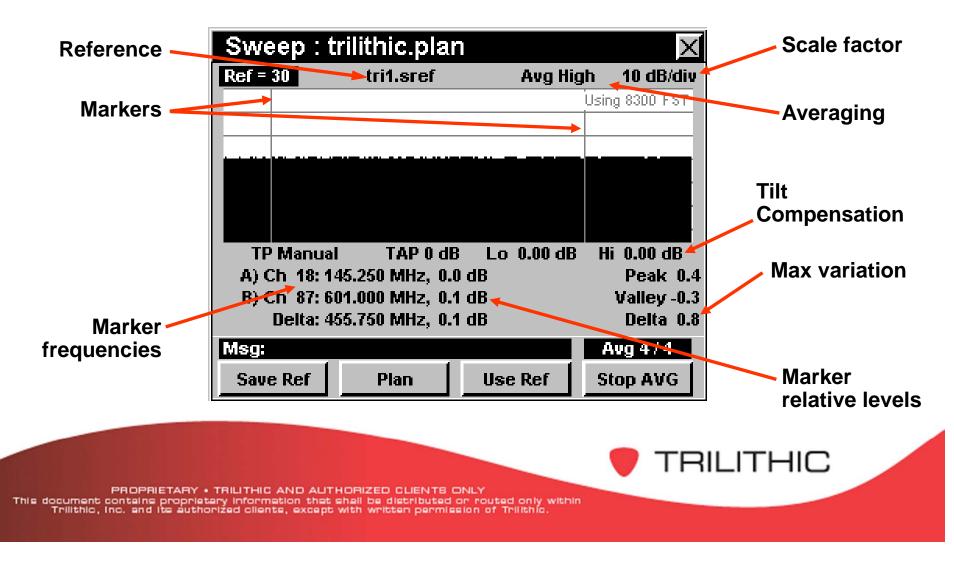


Insertion Diagram

Sweep Forward Path


Sweep Forward Path

- Start at node
 - Verify unity gain
 - Align RF portion of node at test point
- Store a reference at the node
 - Balance trunk first
 - Then work out into the feeder



Sweep on 860 DSPi

860 DSPi Sweep Display

Standing Waves

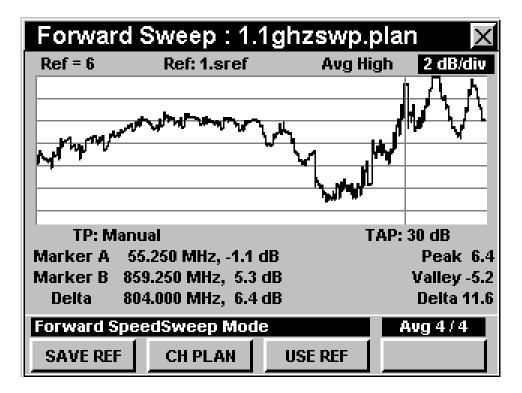
 Automatic distance to fault

SWEEP : bl	hn-indy.plan	\mathbf{X}
Ref = 3	Ref: 1.sref	1 dB/div
TP: Manual		TAP: 0 dB
Marker A 119.7	80 MHz, 0.8 dB	Peak : 4.3
Marker B 155.7	50 MHz, 0.7 dB	Valley : -2.1
Delta 35.97	0 MHz, 0.0 dB	Delta: 6.4
Distance to Faul	t = 11 ft (3 m)	DSP OK
SAVE REF	CH PLAN GET RE	F

TRILITHIC

Standing Waves

Forward	Sweep : 1g	ghzswp.pla	an 🖂
Ref = 6	Ref: 1.sref	Avg Hi	gh <mark>2 dB/div</mark>
www	$\sqrt{\sqrt{2}}$	ᠬ᠕᠕᠕	where a
TP: Manı			AP: 24 dB
	5.250 MHz,0.7 (Peak 4.2
	9.250 MHz,0.4 4.000 MHz, -0.3		Valley -0.8 Delta 4.9
Forward Spe	edSweep Mod	e	Avg 4/4
SAVE REF	CH PLAN	USE REF	



Suck-Out

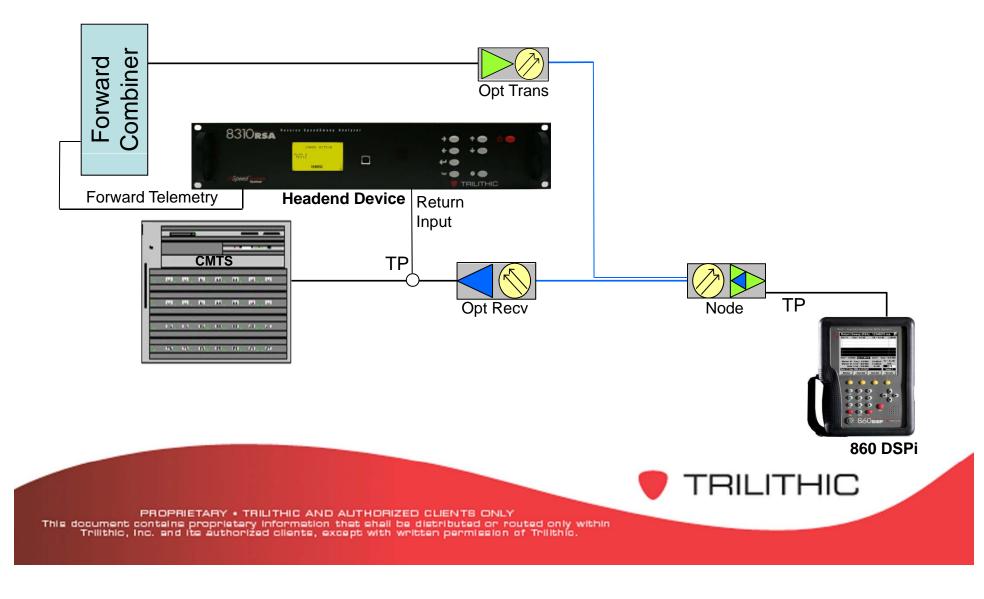
Forward	Sweep:1.	1ghzswp.p	olan 🛛 🖂
Ref = 6	Ref: 1.sref	Avg Hi	gh 2 dB/div
			with mark the second
			1.
L L			
TP: Man	ual	Т	AP: 30 dB
Marker A 5	5.250 MHz, 1.0	dB	Peak 3.0
	97.250 MHz,0.4		Valley -1.6
Delta 9 [,]	42.000 MHz, -0.5	dB	Delta 4.6
Forward Spe	edSweep Mod	e	Avg 4 / 4
SAVE REF	CH PLAN	USE REF	

Suck-Out

Roll-Off

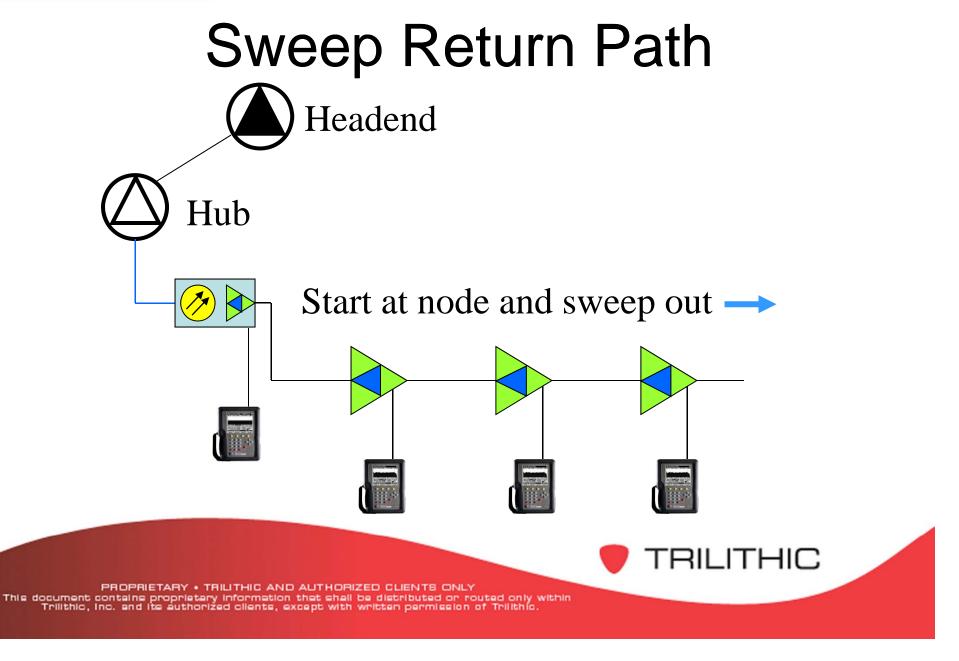
Forward	Sweep:1.	1ghzswp.	plan 🛛 🗙
Ref = 6	Ref: 1.sref	Avg H	igh 2 dB/div
	and the second second	<u>, and a standard</u>	
N			<u></u>
			••• <u>``</u>
TP: Mar	mal		TAP: 30 dB
	55.250 MHz, 0.8		Peak 4.7
	59.250 MHz, -0.5		Valley -4.1
	04.000 MHz, -1.2		Delta 8.7
Forward Spe	eedSweep Mod	e	Avg 4/4
SAVE REF	CH PLAN	USE REF	

Broadband Instruments and Systems



Return Path Testing

Headend Diagram

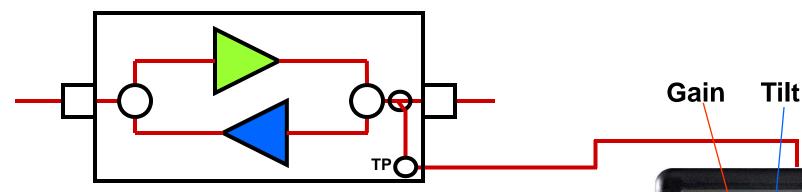

RILITHIC

Return Sweep

Balancing of the System

- Sweep Signals transmitted by field unit are recovered and analyzed at headend
 - Gain, Tilt and Frequency Response of sweep carriers are returned to the field unit via a downstream telemetry carrier (50 MHz to 1 GHz)
- Start at node
 - Store Reference trace
 - Proceed to amplifier

Return Sweep


Returr	I Swee	p (RSA)) : 12345	678.rsa	a 🗙
Ref = 6	Gain =	0.2 dB	Tilt = 0.	2 dB 2	dB/div
Start = 5.	0 MHz T:	x 43 dBm\	/ Unit B	Stop = 45	.0 MHz
		= 6.0 MHz		V Pv= ().5 dB
		= 40.0 MHz = 34.0 MHz			
		at 15:32:29		Swp	
Marker	Sa	ve Ref	Use Ref	RxL	.ink

- Sweep Screen
 - Plots received level in the Headend for each sweep carrier
 - Scale 1, 2, 5, & 10 dB per Division
 - Ideal Trace is a flat line
 - Gain Information
 - Difference between Headend nominal and sweep carrier level
 - Tilt Information
 - Difference between low and high pilot carrier levels
 - Displays impairments to frequency response
 - Damaged cable, actives, or passives
 - Low or High end roll off

Return Sweep

The return sweep displays the Gain &Tilt at the top of the screen

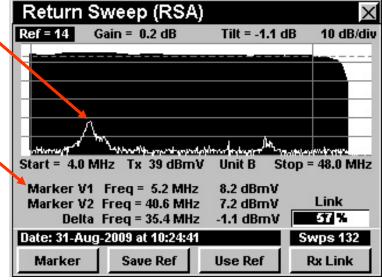
TRILITHIC

(1) 860 DSF

(RSA)

Return Sweep

- Displays both sweep & ingress screen while sweeping
 - The Ingress can be turned
 - ON/OFF
 - Via the FN Key


Return S	weep (RS/	4)	X
Ref = 14 (Gain = 0.2 dB	Tilt = -1.1	dB 10 dB/div
- Caracteria			
Λ			
A Street A	⁸⁷ 4 ¹ 48:4449144-4740-4744-4745	A North Land	
Start = 4.0 M	Hz Tx 39 dBm		itop = 48.0 MHz
Marker V1	Freq = 5.2 MH		
Marker V2	Freq = 40.6 MH	iz 7.2 dBmV	Link
Delta	Freq = 35.4 MH	lz -1.1 dBmV	57 %
Date: 31-Aug	-2009 at 10:24:4	И	Swps 132
Marker	Save Ref	Use Ref	Rx Link

TRILITHIC

Return Sweep

 Sweep & Ingress
 Move marker location until locate the frequency of the ingress
 Return Sweep (RS Ref = 14 Gain = 0.2 dB Gain = 0.2 d

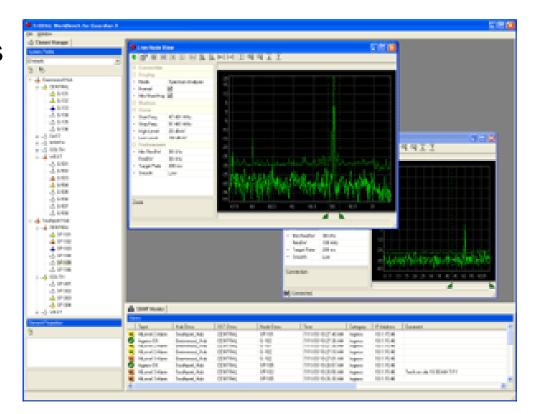
TRILITHIC

Return Sweep

- Possible causes of High Noise Levels
 - Excessive gain
 - System integrity
- Remedies:

- Balance trunk first then work out into the feeder to adjust Pads & EQ's
- Keep all fittings tight, fix all rodent chews & tree rubs, plus watch out for backhoes

Broadband Instruments and Systems


Return Path Certification and Monitoring

Certifying Return Path

- There have been as many methods and specifications
- Examples include
 - a one-hour max hold
 - ten minutes max hold
- The results are considered to demonstrate that over this period the network would either pass or fail based on the amount of junk viewed

TRILITHIC

Certifying Return Path (cont.)

- Voip is not a 1 hour service
 - 24 hour
 - 7 days a week
- This maximum measurement is also not indicative of the true performance of the network
- The certification process should be at least a twentyfour hour certification
- Should be an on-going figure of merit.

a gate	
Changed Homoger	State State State
and the second	
	· FRANKISSAN ING ANG I
5 B.	1 Table
- A Concentration	international and an
to the CENTRAL	· Ind B
	· Britship 2
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 hours
- A. 1999	- Indian distance in the second s
	· Instance
A 1998	· Taken Sher
a	There has a second seco
a -5 mmm	1 Interest
1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	- 10 March 1
1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	Matri Bala and Andreas and Andre
- (5, B/B/	- Leaster aller - Adda and a state and a state of the sta
- A 1200	
	ETROP SPECIFICATION CONTRACTOR SPECIFIC
- A 1998	
- A. 1998	
- A Sector 114	
10 ¹ 10 ² 100	LINKY IN
10 ⁻¹	Inder them by the second
4 12 10	- Ingline Dies
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	insta
and the second second	110503934439545
	M County
10° 000	And a second
	A Test Year
10 S MERT	
	Then Malline Milline Notelline See Steppe Printer General
	 Restitute Internation (2010), 1810. Distribute International Control of Con
	Sparell Internet, 54 (2016) 0.01 Intelligible Spare 0.1.04
<u>.</u>	 Appropriate Sectory, 2 of the sectory and spectrum.
	 Accelerate presentation (2010) 2.4 (2010)
5	Revellage Second, ha (2010a) 0.40 700000/0.00 hpt 0.104 Revellage Second, ha (2010a) 0.40 Revellage Second, ha (2010a) 0.40
	Constant Sector 2, 24 (2019), 4 (2) (2019), 5 (2) (20
1	Revellage Second, ha (2010a) 0.40 700000/0.00 hpt 0.104 Revellage Second, ha (2010a) 0.40 Revellage Second, ha (2010a) 0.40

TRILITHIC

RILITHIC

Troubleshooting Summary

- Verify at the node
 - Determine which leg(s) are contributing to the problem
- Identify the span
 - Using amplifier test points "Get ahead" of the problem
- Isolate to the tap
 - Using a return path test probe isolate the problem
- Pinpoint the origin
 - To a tap (subscriber premise)
 - Damaged Cable

Node Certification Report

- Automates node certification testing
- Specify Locations and time span
- Returns Pass/Fail results based on ingress levels vs. user specified limits

Node Certification Report

Summary Report

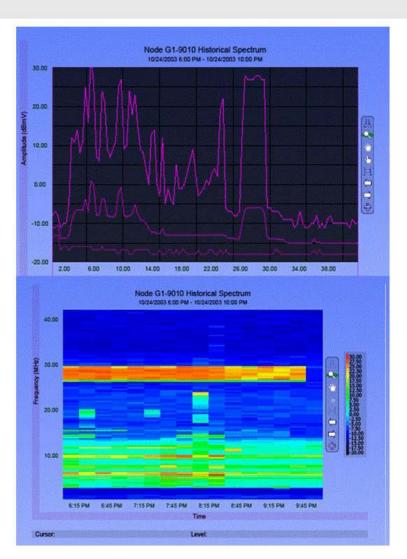
- Includes Header information
- Summary of test results
- Pass/Fail results by node

) Back + (🔿 🔹 😰 🚮 🔎 Sea	arch 👷 Favorites 🜒 Media 🔗 🍰 - 딇 🔜					
		/Trilithic/Node+Reports/Node+Certification&rs:Command=Rem	der&rs:Format=HTML4.0&rc:Parameters=	false&ReportGuid	=9be7ce5f-2	c11 💌 🛃 Go	Links
14	4 1 of 232 🕨	Find Next	Select a format	• Export	Ø (3 2	
							2
		Node Certifciation Report					
Report	Settings						
	Report Name	Palmdale/Landcaster Training					
	Run Date Time	9/27/2006 1:00:00 AM to 9/27/2006 6:55:00 AM					
	Span (MHz)	0.375 - 65.25					
	Minute Interval	5					
	Limit Name	Training					
Summa	ry						
	25 Nodes						
	19 Passed						
	6 Failed						
Detail							
	Node Name	Test Result					
	LN 297	Fail					
	PD 158	Fail					
	LN 144	Pass					
	PD 290	Fail					
	PD 013	Pass					
	LN 009	Pass				Local intranel	

TRILITHIC

Historical Analysis

- Specifically designed for convenient and efficient historical analysis
 - Archives up to a year of data
- Displays both historical and live spectral views
- Calculates the average probability that a node will exceed its thresholds over time


RILITHIC

Historical Analysis Tools

- Recall spectral information over selected time periods
- View frequency availability of the return path for new service launches
- Evaluate the impact of changes in modulation schemes on system services
- Verify existing services are meeting performance standards
- Generate figure of merit calculations for return performance

Spectral History

- Retrieve Spectral History
 - Both spectral and time based views
 - Evaluate the severity and duration of ingress related events
 - View the waterfall graph

TRILITHIC

ADIA Node Service Report

Node Service 1 Group					S	and the second division of the second divisio		
🔵 🔾 👻 🛄 C:\Us	ers\tholmes\Pictures	\Trilithic Pics\	Node_Sen	• + ₇ ×	Google		Q	
<u>File Edit V</u> iew F <u>a</u>	vorites <u>T</u> ools <u>H</u> e	lp					1	*
🚖 🎄 🌈 Node Se	ervice 1 Groups			🟠 🔹 🕅	N • 6	• 🔹 🔂 <u>P</u> age	e 🔹 🎯 T <u>o</u> ols 👻	
			Alarm State	Time Span	(h:m:s)			
Node	Events	No Signal	Level 4	Level 3	Level 2	Level 1	% Over Limit	
16 Nodes	145994						20.977%	F
16 Node(s)	<u>145994</u>						<u>20.977%</u>	Ϊ,
ENGR 25	<u>45</u>		1478:10:35				<u>99.934%</u>	
SST A Node 1	<u>49</u>		1478:02:40				<u>99.926%</u>	- I
ENGR 18	<u>145855</u>		1020:38:05	13:40	04:32:59	118:30:00	77.336%	
ENGR 26	<u>45</u>		864:21:18				58.436%	
ENGR 27							00.000%	

TRILITHIC

Broadband Instruments and Systems

Work Management Logging

Field Measurement Data Mgmt.

- Helps ensure that proper testing is done
- Leads to higher service quality
- Cuts down the number of truck rolls
- Provides data for effective management
 - Reports
 - Queries
- Saves \$\$\$

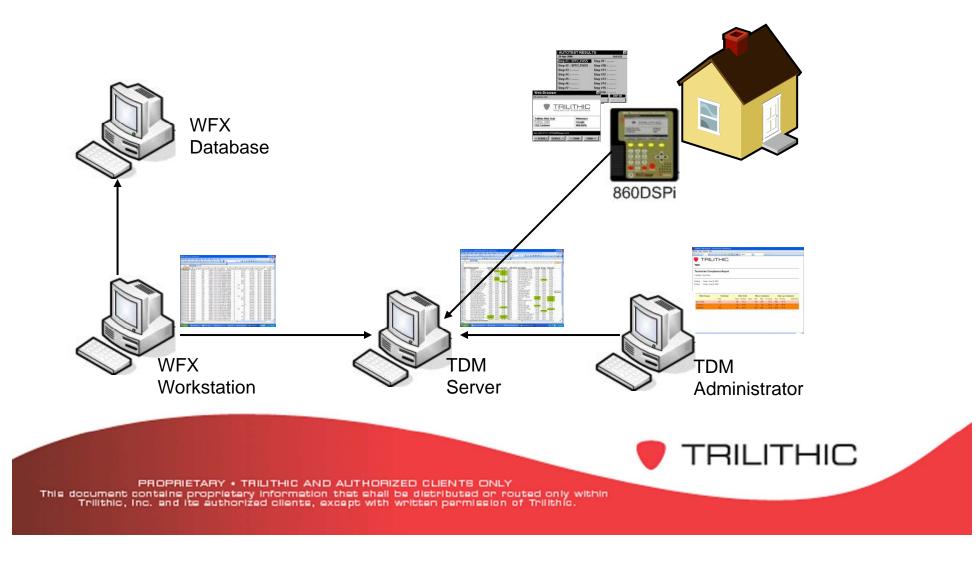
System Diagram

- Work order retrieval
- Test macros/temp storage
- File transmission

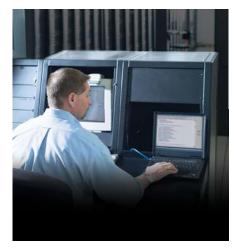
WorkBench/TDM Component

- TDM user interface
- Data display and analysis
- Queries, Reports

 Microsoft IE Browser
 Manager/Supervisor access to reports - Data file generation


TDM Server

- Data communication
- Measurement database


System Integration

Administrator Interaction

- Administrator (manager/supervisor)
 - Queues-up 860 DSPi configuration changes
 - Channel plans
 - Test macros
 - Firmware
 - Packages
 - Runs reports and queries data as desired

Technician Interaction

- Morning
 - Work order data is replenished daily with data through the use of an automated script – may be replenished at any time or frequency.
 - Technician connects to TDM with 860
 - Gets configuration updates from queue
 - Downloads work orders for the day, or
 - Creates work orders directly on the meter

TRILITHIC

TRILITHIC

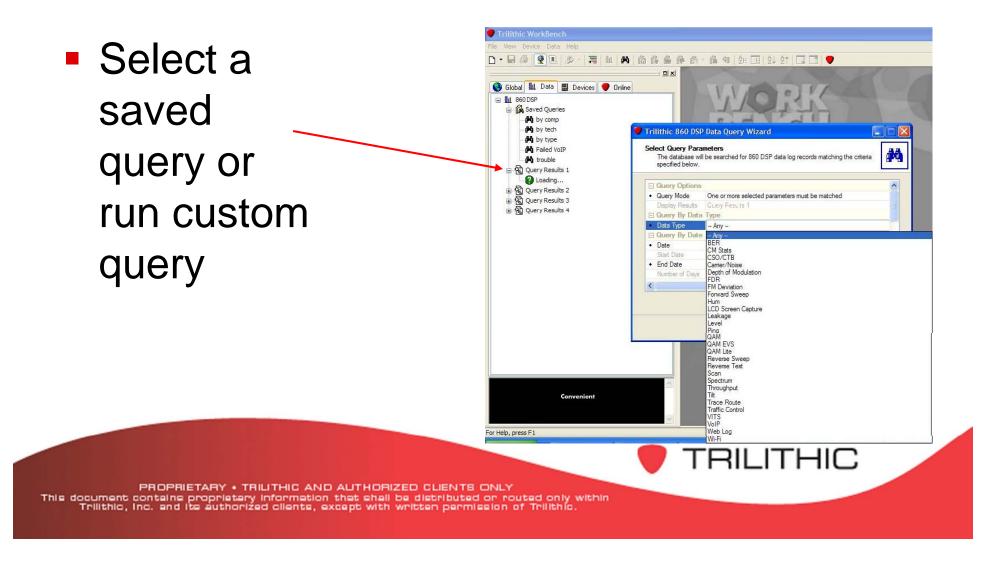
Technician Interaction

- Daily routine
 - At job site, technician performs tests with macros
 - Saves results to work order task ID (provided by TDM)
 - Technician accesses next job, which was downloaded from TDM this morning
 - Addresses for all queued jobs are viewable in 860
 DSPi task folder
- Evening
 - Technician uploads all completed data logs to TDM

Reports

- Macro summary
- At-tap node history
- Calibration check
- House history
- Meter inventory
- Set-top compliance
- Technician compliance

All reports are storable, and can be emailed with expansion/contraction features intact


BILITHIC

WorkBench Queries

- Queries enable a user to search for specific data
- They can be customized to find particular information
- They can be saved and repeated on demand
- This is a very flexible, powerful tool

WorkBench Queries

End of Session One Questions?

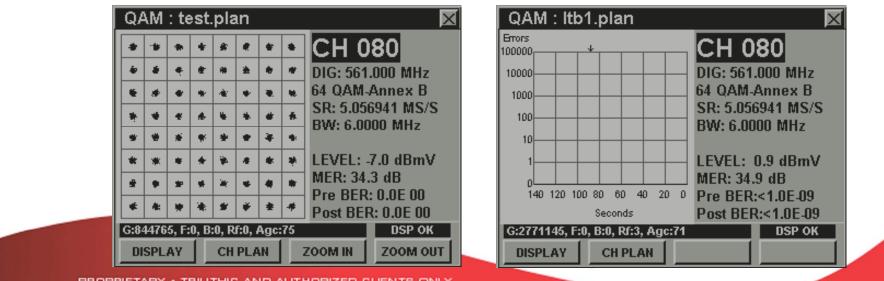
TRILITHIC

Session Two

- Troubleshooting the QAM Carrier
- Ingress Troubleshooting Using Leakage Detection
- HSD Troubleshooting
- VoIP Services
- The Challenges and Diagnostic Tips
- Using the Tools and Test Equipment Properly

Broadband Instruments and Systems

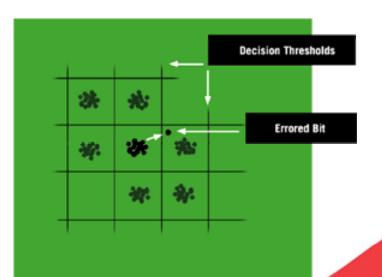
QAM Measurements



QAM Measurements

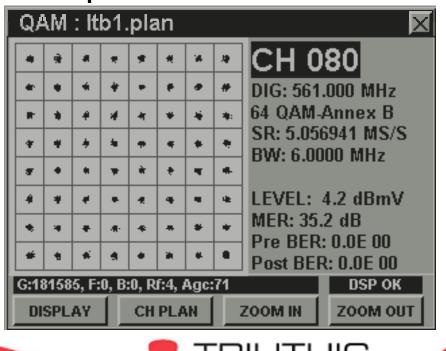
- Constellation Display
- MER
- BER

- True BER or Estimated



Reading Constellation Diagrams The boundary is called the A constellation diagram is a

- "Decision Threshold"
- If a signal disturbance pushes a symbol across the Threshold it is incorrectly interpreted as belonging in the neighboring box, and becomes a "bit error"
- Symbols that are not disturbed enough to be pushed across Thresholds are always interpreted correctly


good troubleshooting aid and can give clues concerning the source and nature of a disturbance

Constellation

- The constellation display shows both I and Q
- Helps determine modulation problems:
 - Amplitude Imbalance
 - Quadrature Error
 - Phase Error
 - MER

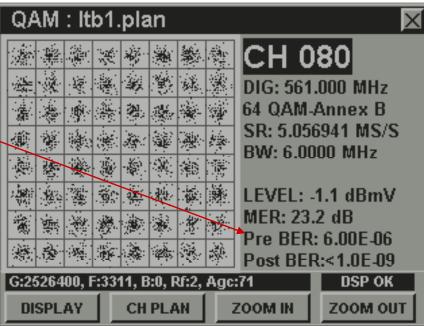
TRILITHIC

Constellation Deviation from the ideal location

Q/	QAM : Itb1.plan								QAM : Itb1.plan				
	9Ì			*	*		4	CH 080	· · · · · · · · · · · · · · · · · · ·				
•	٠	*	*			•	#	DIG: 561.000 MHz	發展 · · · · · · · · · · · · · · · · · · ·				
F			*	*	*	*	*:	64 QAM-Annex B	👔 🍇 🕸 🍇 🍇 🎉 🎯 64 QAM-Annex B				
*		٠	*	-	•	*	٠	SR: 5.056941 MS/S BW: 6.0000 MHz	· · · · · · · · · · · · · · · · · · ·				
	•	٠		*	*	-		DYY. 0.0000 WITZ					
4	*			*	4	-	46	LEVEL: 4.2 dBmV	· 響 熱 馨 豪 豪 泰 藤 隆 LEVEL: -1.1 dBmV				
•	4	٠	A.	*		*	•	MER: 35.2 dB	MER: 23.2 dB Pre BER: 6.00E-06				
*	•	*		•	*	*	•	Pre BER: 0.0E 00 Post BER: 0.0E 00	Pre BER:<1.0E-09				
G:10	G:181585, F:0, B:0, Rf:4, Agc:71 DSP OK						:71	DSP OK	G:2526400, F:3311, B:0, Rf:2, Agc:71 DSP OK				
DI	DISPLAY CH PLAN ZOOM IN ZOOM OUT DISPLAY CH PLAN ZOOM IN ZOOM OUT												

Good MER

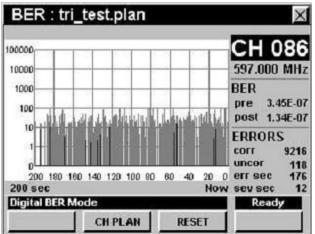
Poor MER


TRILITHIC

BER

- Bit Error Rate is the number of bits in error divided by the total number of bits in the data transmission
 QAM : Itb1.plan
- Pre BER

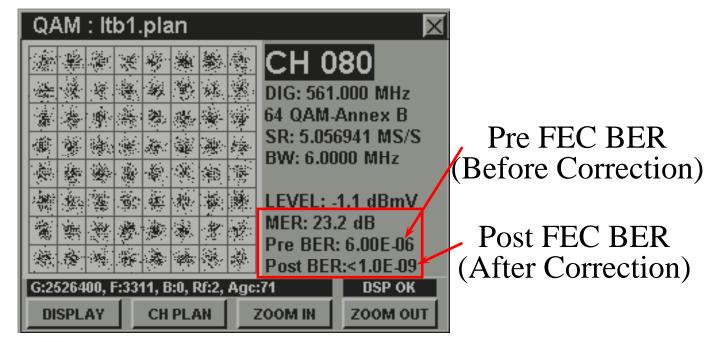
-System Margin



TRILITHIC

- Digital signals work well until very close to the point of failure
- Measurement of digital carriers critical to determine the system margin
 - Signal level
 - MER
 - BER

TRILITHIC


The BER Mode helps to find problems

Forward Error Correction FEC

- Corrects errors to a point

TRILITHIC

Digital Troubleshooting Tips

- Verify that the problem is happening before you troubleshoot
- Check
 - RF levels
 - MER
 - BER
 - Constellation
 - Signal Leakage

BILITHIC

Digital Troubleshooting Tips cont.

- The return spectrum for excessive noise
- What channels are being effective
- Adaptive Equalizer for reflections
- Connectors
- Wiring
- What time the problem occurs
- Diagnostic screens on the set top
- The noise floor under QAM

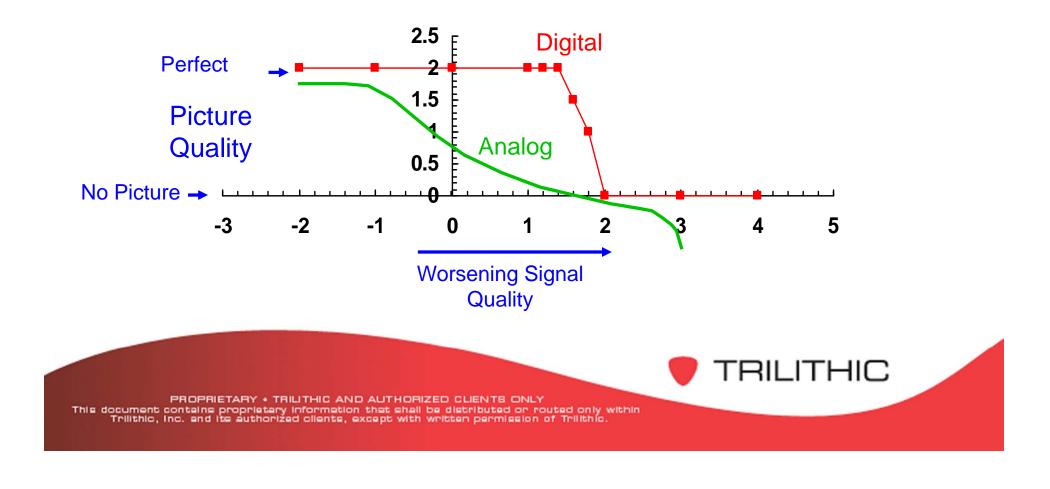
Error Vector Spectrum

 To view the noise floor under QAM the carrier needs to be removed

	-15	Avg 32	RBW 30	kHz L	.im = 0	10 dB/div	
	fin Qu	+		mopon	han	m	
+						+	
$f \rightarrow f$						- V	
"ont		7.000 MH		6	pan: 6.0		
			ے MHz,		•	eak	
	ker B	: 32.000	MHz, iz,	dBmV	564.9		
D		n-2008 at	19:28:03			SP ОК	

QAM EVS : trilithic.plan								
Ref = 20	CH 081	256 QAM-/	Annex B 1	0 dB/div				
MER 31.9								
+++-								
+++-								
Marin	man	man	mont	mate				
	000 MHz SF		BW: 6.0000					
	Marker A : 564.320 MHz, -46.7 dB Peak Marker B : 569.659 MHz, -46.5 dB 567.000 MHz							
	Delta: 5.340 MHz, 0.2 dB -42.1 dB							
Date: 15-Jan	-2008 at 17:0	7:08	D	SP OK				

TRILITHIC


PROPRIETARY • TRILITHIC AND AUTHORIZED CLIENTS ONLY This document contains proprietary information that shall be distributed or routed only within

Trilithic, Inc. and ite authorized cliente, except with written permission of Trilithic.

Threshold and Margin

Signal Quality versus Picture Quality

MER TARGET - THE "CLIFF" EFFECT

What is The "Cliff Effect"?

Ingress & Egress

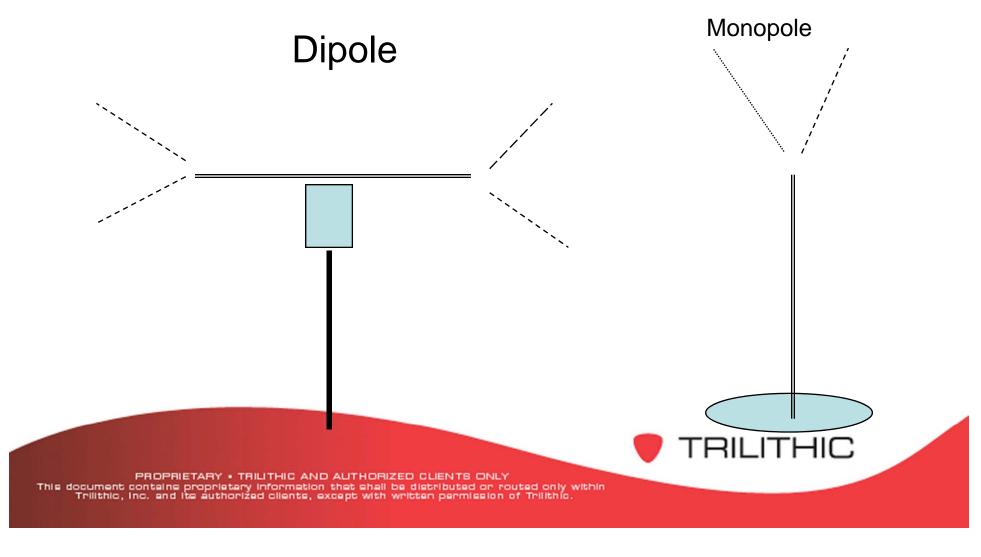
 RF or electrical energy that enters the coaxial environment

Egress

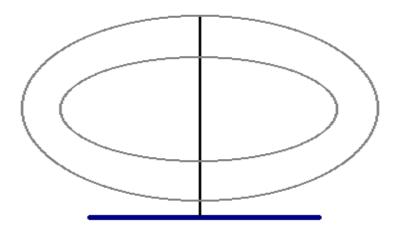
 RF signal leaking out of the coaxial environment

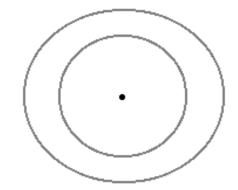
TRILITHIC

Leakage Detection Benefits


- Eliminates Ingress
- Improves System Performance
- Reduces Repeat Service Calls
- Locate Physical Problems within the network

TRILITHIC




Polarization Angle

Leakage Antennas-Whip

TRILITHIC

Leakage Antennas-Dipole

HSD Troubleshooting Tips

High Speed Data

- Downstream is streaming data
 - Constant signal
- Upstream data signals are bursty

Network Ping

- Enter Host Name or Host IP
- Packet Delay (how often packets are transmitted
- Packet Size (size of packets transmitted
- Sent and Received Packets
- Lost Packets
- LPR (Loss Packet Rate)
- LPR(%) (Percentage of Loss Packets)

Network P	ing (IP 10	.1.31.98)	\times
Host Name			
Host IP	10.1.70.92	2	
Pkt Delay	100 msec	Pkt Size	512 bytes
Sent	269	Min Time	5 msec
Received	269	Avg Time	12 msec
Lost	0	Max Time	160 msec
LPR	0.00e+00	Latency	67 msec
LPR (%)	0.0 %	Jitter	77 msec
Date: 09-Dec-20	008 at 09:51:09		
Favorites	Start	Stop	Modern

Ping from the PC

Microsoft Windows [Version 6.0.6001]	-
Copyright (c) 2006 Microsoft Corporation. All rights reserved.	
K:>>PING WWW.YAHOO.COM -t	
Pinging www-real.wa1.b.YAHOO.COM [209.191.93.52] with 32 bytes of data	-
Reply from 209.191.93.52: bytes=32 time=34ms TTL=58	
Request timed out.	
Reply from 209.191.93.52: bytes=32 time=34ms TTL=58	
Reply from 209.191.93.52: bytes=32 time=34ms TTL=58	
Reply from 209.191.93.52: bytes=32 time=34ms TTL=58	
Reply from 209.191.93.52: bytes=32 time=38ms TTL=58	
Reply from 209.191.93.52: bytes=32 time=34ms TTL=58	
Reply from 209.191.93.52: bytes=32 time=34ms TTL=58 Reply from 209.191.93.52: bytes=32 time=34ms TTL=58	
Reply from 209.191.93.52: bytes=32 time=34ms TTL=58	
hepty 110m 207.171.73.32. bytes=32 time=31ms 111=30	
Ping statistics for 209.191.93.52:	
Packets: Sent = 10, Received = 9, Lost = 1 (10% loss),	
Approximate round trip times in milli-seconds:	
Minimum = 34ms, Maximum = 38ms, Average = 34ms	
Control-C	
^C	
K:\>PING WWW.YAHOO.COM -t	

Trace Route

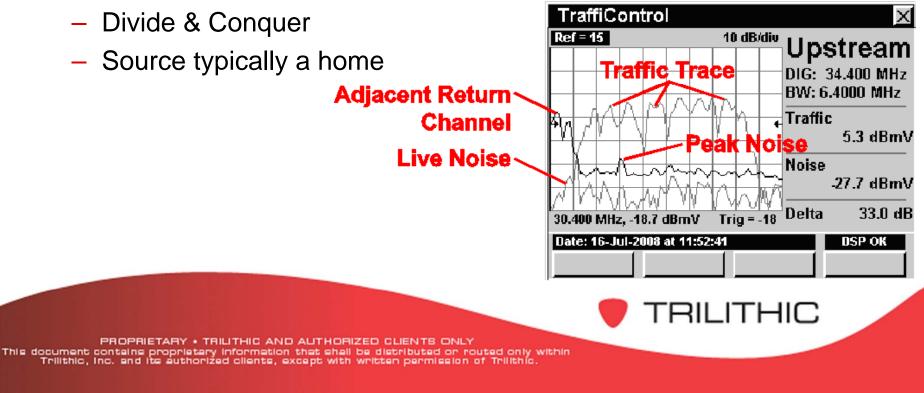
Ho	st Name	WWW.YAHOO.COM
	Host IP 2	09.191.93.52
1	10.1.1.1	10 msec : bem.trilithic.net
2	207.250.51.12	9 <10 msec : 207-250-51-129.static.twtelecom
3	66.192.244.2	0 10 msec : peer-02-so-0-0-0-0.chcg.twtelec
4	216.115.96.4	1 30 msec : v1151.bas2.dal.yahoo.com
5	216.115.104.8	9 50 msec : ge-1-1-0-p120.msr1.mud.yahoo.co
6	68.142.193.9	30 msec : te-9-1.bas-c1.mud.yahoo.com
7	209.191.93.5	2 30 msec : f1.www.vip.mud.yahoo.com
8		
Date	: 06-Mar-200	8 at 11:03:50

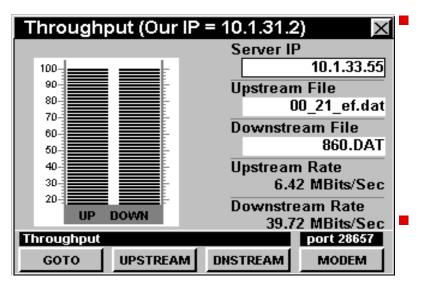
- Sometimes it's helpful to run a trace Route from the subscriber's PC
- This will show the routing point where the transmission stops
- Some devices can be configured not to respond to ping, as a security measure

firewalls for instance

TRILITHIC

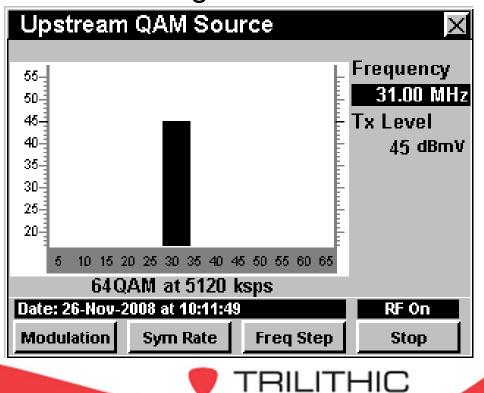
Trace Route from the PC


Command Prompt
Microsoft Windows [Version 6.0.6001] Copyright (c) 2006 Microsoft Corporation. All rights reserved.
X:\>TRACERT WWW.YAHOO.COM
Tracing route to www-real.wa1.b.YAHOO.COM [209.191.93.52] over a maximum of 30 hops:
1 <1 ms <1 ms <1 ms bern.trilithic.net [10.1.1.1] 2 18 ms 8 ms 5 ms 168-215-73-193.ilectris.com [168.215.73.193] 3 10 ms 10 ms 10 ms dist-02-ge-3-1-0-401.brfd.twtelecom.net [66.192. 254.70]
4 40 ms 31 ms 36 ms so-0-0-0.pat1.dax.yahoo.com [216.115.96.60] 5 37 ms 31 ms 36 ms ae2-p110.msr2.mud.yahoo.com [216.115.104.109] 6 32 ms 33 ms 42 ms te-9-1.bas-c2.mud.yahoo.com [68.142.193.11] 7 31 ms 38 ms 36 ms f1.www.vip.mud.yahoo.com [209.191.93.52]
Trace complete.
X:\>TRACERT WWW.YAHOO.COM


Traffic Mode

- Traffic mode can be used to see the ingress that is present "underneath" an upstream cable modem carrier, VoIP carrier, or any bursty signal
- Troubleshooting made easy

Throughput Test


- Throughput rates up to 40Mbps
 - Select test at fixed throughput rates, such as 5 Mbps, 10 Mbps, 15 Mbps, 30 Mbps, and 40 Mbps to test various tiered services
 - Test at both the desired speed and one speed higher to prove that the cable modem is provisioned correctly

QAM Source

- Upstream QAM source verifies the transmission capability of the network for higher order QAM signals
 - QPSK
 - 16 QAM
 - 64 QAM
- Adjustable
 - Symbol Rate
 - Level
 - Frequency

VoIP Troubleshooting

How Testing Helps

- Must be quick to identify, isolate, and solve problems – know system health
- Recruiting customers is expensive, and long-term retention is critical to ROI
- Loss of voice customer may also mean loss of the rest of the triple-play revenue

Broadband Instruments and Systems

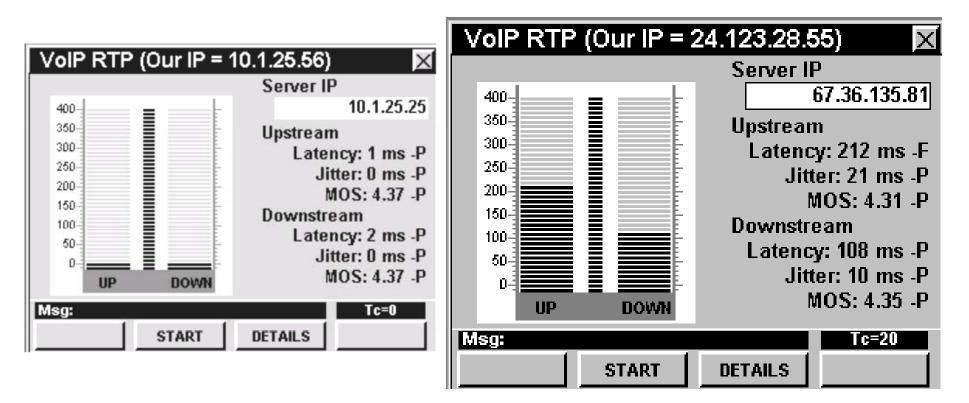
VoIP Tests, Pre-Activation

Pre-Infrastructure VoIP Testing

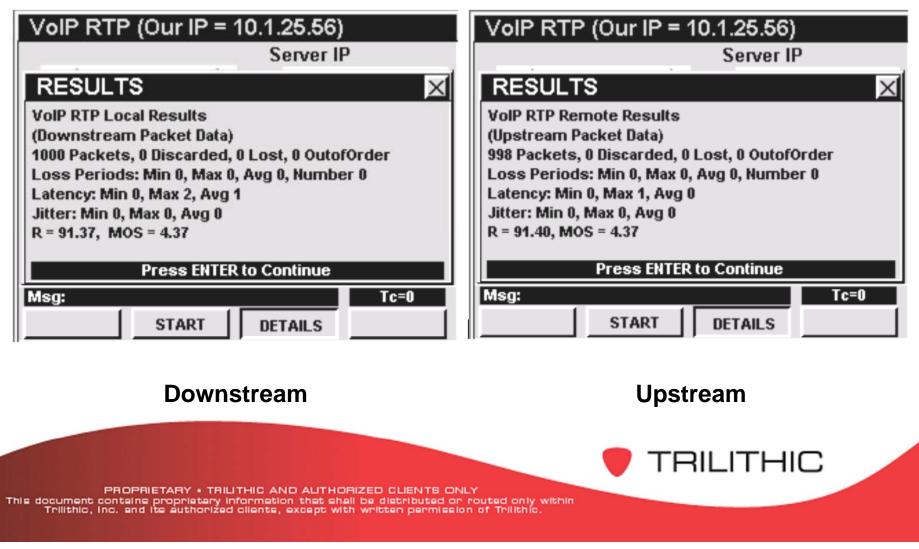
- Prepares system for VoIP service offering by pre-testing
- RTP (Real-time Transport Protocol) tests for packet loss, jitter, and delay, with MOS
- Inexpensive solution, with low-cost headend based server

RTP Test

- Communication established
- Server and analyzer synchronize test parameters and clocks



- Communication occurs using RTP over UDP (User Datagram Protocol) at pre-negotiated port
- Results are calculated and compared to limits Pass/Fail results


Sample Results

TRILITHIC

Sample Results – Drill Down

RILITHIC

Mean Opinion Score (MOS)

- Subjective voice quality score based on the perception of a random group of people listening to speech over a communication system.
- Group of males and females rate the quality of test sentences read
- Each person rates from 1 to 5
- MOS is average: 1 (worst), 5 (best)

RILITHIC

Mean Opinion Score (MOS)

- **Rating Definition Description**
 - 5 Excellent A perfect speech signal recorded in a quiet booth
 - 4 Good Intelligent and natural like long distance telephone quality
 - 3 Fair Communication quality, but requires some hearing effort
 - 2 Poor Low quality and hard to understand the speech
 - 1 Bad Unclear speech, breakdown

тніс

Latency (Delay)

- Causes Echo and Talker Overlap
- When delay is > 50 msec, echo becomes a problem; echo cancellation is required
- Talker overlap is significant when one-way delay is > 250 msec

Latency (Delay)

- Can seriously impair communication
- Usually a by-product of switching and routing
- Must be less than 300 msec. round trip

RILITHIC

Jitter

- Packets arrive at destination out of timing or sequence
- Jitter buffer is used to enable re-ordering of packets
- Increasing size of jitter buffer threatens delay
- Should be less than twice packetization rate
- Jitter buffer overflow causes packet loss

Packet Loss

- Can be caused by network congestion, jitter buffer overflow, or ingress
- Random packet loss is less noticeable than "bursty" packet loss
- Target <1%, which is less noticeable when loss is random; >4% renders service unusable

Task for Headend, Maintenance and Service techs

BILITHIC

- Verifies that the home network will support extended service (HSD, VoIP, VOD, Digital, etc)
- To detect faults at the premise
- Why clean it up?
 - The Issues
 - Home wiring architectures
 - Component Requirements
- Testing & Troubleshooting
 - Recommendations
 - Suggestions for a more available service

Broadband Instruments and Systems

What checks should we make to ensure a good install

Broadband Instruments and Systems

Ingress Concerns

TRILITHIC

Ingress on Analog and Digital Channels

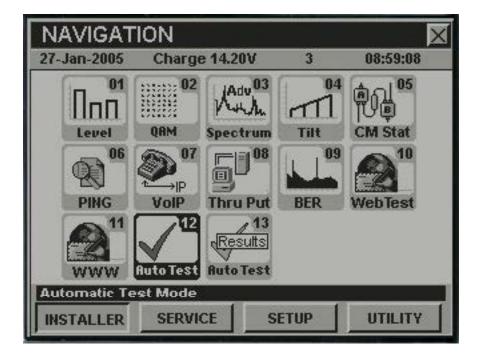
- Lines in picture
- High speed data problems
- Interference with two-way radio services using the same frequencies
- Macro Blocking
- Freeze Frame
- Loss of Picture and Sound

Alternative Maintenance Techniques

- High Pass Filters
 - Attenuate Return Path Noise and Ingress coming from the subscriber premise
 - Isolate entertain services from data services
- Return Path Attenuators
 - Increase the tap loss in the return path only
 - Equalize the loss for subscriber devices and increase isolation between subscriber premise and cable system
- Drop Testing
 - Testing the integrity of the subscriber wiring

TRILITHIC

Broadband Instruments and Systems



Autotest Macros

Auto Test Functions

- Automated Testing of...
 - Level (Single or Scan)
 - Hum
 - VolP
 - Ping
 - QAM
 - Reverse Levels, Ingress
- Selectable Timing, Channel Plan, Label
- Test to Limits
- Results Labeled, Displayed and Stored

TRILITHIC

Broadband Instruments and Systems

Remote Signal Monitoring & Analysis

Scheduled Reporting Challenge

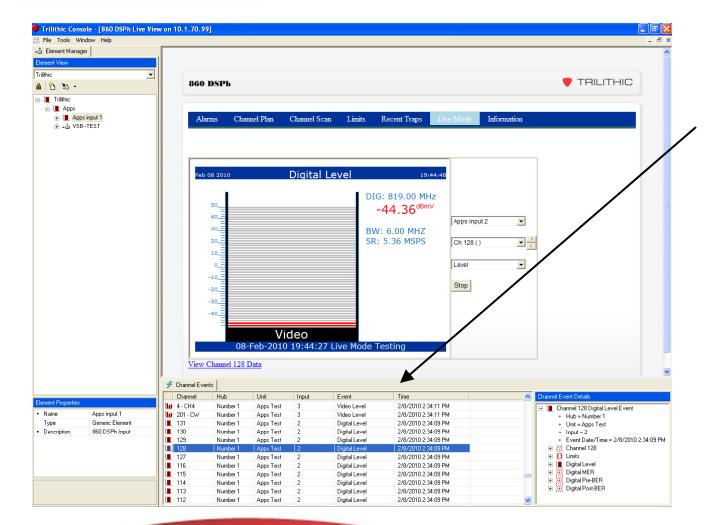
- Common task report test signal analysis results
 - all signals
 - on regular schedule
- Techs required to visit remote locations
 - to verify and report signal quality
- Time consuming and expensive process, begging for automation

Eliminate Unnecessary Travel

- Trips to remote sites no longer required to perform a wide variety of signal quality tests
- Automate measurements
- Access for "live" measurements using browser

Applications

- Monitor forward signal quality
 - User definable limits
 - Management application software
 - Manages traps from
 - E-mail alarm notification
 - Designated technician/engineer/manager
- Check current status
 - Similar to 860 DSPi browser access/control



Alarm Analysis

- Display current alarm status
 - Based on traps received
- Provide easy access to remote devices
- Activate email notification of specified user

Channel Events

Displays channel alarms received from devices.

Click once on a channel event to see the Channel Event details.

Double-click on a channel event to bring up a live view mode to monitor current channel measurements.

TRILITHIC

Channel Scan (Live Mode)

Alarms	Channel Plan	Channel Scan	Limits	Recent Traps	Live Mode	Information	
Aug 06 2005		Chapr	nel Plar	Scan		17:59:56	
50 40 30 20 10 -10 -20 -30 -30 -40 -50 121.25			nput: 0	1 1 1 1 1 1 1 1 1 1 1		Input#1 Ch 80 () Scan Stop Channel: 561.00 M Dig Leve 3.80 dBr	MHz I:

This do

Maintenance Activities on the Digital HFC Network

Spectrum Analyzer (Live Mode)

	annel Plan	Channel Scan	Limits Re	cent Traps	Live Mode	Information	
06 2009	A	dvanced S	pectrum A	Analyzer		18:05:04	
21 11 -9 -19 -29 -39 -49 -59 -69 510.00	511.99	515.98	۰٬۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰		<u>525.95</u>	530.00	Input#1 Ch 80 () Spectrum Stop Start: 510.00 MHz Stop: 530.00 MHz Ref: 21 dBmV RBW: 30 KHz Hold: None Avg: Avg 16
		Ig-2009 18:0	19 dBmV		ode 0 MH		Submit

Constellation Diagram (Live Mode)

Jar	ms		Cl	hant	nel l	Plan	1	C	'har	mel	Sca	an		Lin	nits	Recent Traps	Mode	Information
.g C	16 2	009			C	2A	Μ	М	ER	٤/	С	or	nst	el	lat	ion 18:18:00		
195	-	(ģ.	10.	-25	185	37	195		.2	. #	:77	-61	εų.	18	1	DIG: 645.00 MHz		
29	-	:22	181	¥1.	ð:	31	ب ال	4	735	(9 1)	şê.	ith.	April	1	14	Level: 11.14 ^{dBmV}		
iĝi.	199		58.	-974		35	21	-15	14a-	(#)	-g!-	.24	- 92	162	A.	MER: 34.46 dB		
38Ú	, day	- 教	di.	14	15%	1	.gt	17	.53	172	335	40	-4=	-	-	BW: 6.00 MHz		
÷.	115	(3]-	-16	dy.	<i>.</i> #.	÷2.	14	÷ģ;	ė.	325		-	· f :>	:9i-	4	SR: 5.361 MS/S		
-1	-65	-96	ş	şr	赤	47	121	.91	4.1	4	19R	:3:	. KE	-	1	Pre BER: 1.00e-9	Input#1	Y
New	-14	32	iai isi	معر	- 25	185	-30	181	\$	-42	ŝ	\$5	135	34	4	Post BER: 1.00e-9		
120	4	iğu	28	.37	:57	.#	÷.	.4:	.at	74		1	.42	-q-	·31.	Modulation type:	Ch 94 (
4	24	185	3 ²	·#	4	10	ŝ	-	3	(#*	iĝî	10	ŵ	ijs.	-87-	256 QAM	QAM / N	IER 🔽
26 16	-3%	· éi	(4 5	27	37	;z;	55	λų.	19.1	10	178	ŵ٢.	136	*	1.20		Zoom I	N Zoom Out
ф.	192	-	.#	:\$7	37	з¥С	ų,	:4/	÷.	180	\$2	<u>\$</u> ?	- 195	-	1		Stop	
жţ	4	аў.	40	191	191	A.	Ð	1	ņ	άį,	÷.	.f -	ų.	÷.				
at.	(35	4	37	1	ġ.	al.	1	0)s	de la	4	4	100		#1	14			
	2;	潮	. <u>9</u> >	3		40	25	1	st.	10.0	:51	à.	-	30	ŝî.			
÷.		Nj	ikį	.86	40	153	法	-#	32	1	135	37	:55	sit.	1.4.4			
	4	14.	-	.iii	-2-	-	12	12		.85	18%	185	1.45	14	14			

PROI This document contai Trilithic, Inc. ar

This docur Trill Maintenance Activities on the Digital HFC Network

BER Over Time (Live Mode)

Alarms	Channel Plan	Channel Scan	Limits	Recent Trap	os Live Mode I	nformation	
Aug 06 200	° 健 QAM	QAM BER		Time FEC	10:49:17 DiG: 699.00 MHz		
10000					MER: 33.26 dB BW: 6.00 MHz SR: 5.361 MS/S Mod: 256 QAM BER	Input#1	
100					Pre: 1.44E-09 Post: 1.00E-09 ERRORS Corrected: 4 Uncorrected: 0 Err/S: 0	BER Over Time V 60C Seconds V Stop	
0 600	540 480 420	360 300 240 Time(S)	130	120 60 0	Severe Frr/S: 0 Correct/S: 136260)	

This doc

Maintenance Activities on the Digital HFC Network

Channel Scan

860DSP		TRILITHIC	
Scan : default.plan Ref = 20 dBmV 10 dB/div	Input 2	1 2 3 GHI	
	CH:074	$ \begin{array}{c} 4 \\ JKL \end{array} \begin{array}{c} 5 \\ MNO \end{array} \begin{array}{c} 6 \\ PQR \end{array} \left(\leftarrow \right) $	
	5.0		
	BW: 6.000 MHz	Bk 0 Fn Fn	
		BR 0 Fn Enter	
Total Power 43.1 Ave Channel Plan Scan	g 4 DSP OK	2 Go Stop	
	rop Limits		

This docum Trilith Maintenance Activities on the Digital HFC Network

Spectrum Analyzer

860DSP	
	Input 2 10 dB/div 4 4 5 6 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 9 1000 1000 1000 1000 1000 1000 1000 1000 10000 100000 $1000000000000000000000000000000000000$

Tools of the Trade

- Return Sweep and Balance
- Forward Sweep and Balance
- Ingress Monitoring
- Work Management
- Leakage

Tools of the Trade

- Digital Measurement
- HSD
- VoIP
- Remote Monitoring

End of Session Two Questions?

TRILITHIC

RILITHIC

Thank you-Gracias-Merci-Masha Danki...

Trilithic Applications Engineering <u>support@trilithic.com</u> Tel: 800-344-2412

Incospec Communications Inc.

Your Value Adder Trilithic Re-Seller for the Caribbean

Mario Sebastiani (<u>msebastiani@incospec.com</u>) Bernard How (<u>bhow@incospec.com</u>)