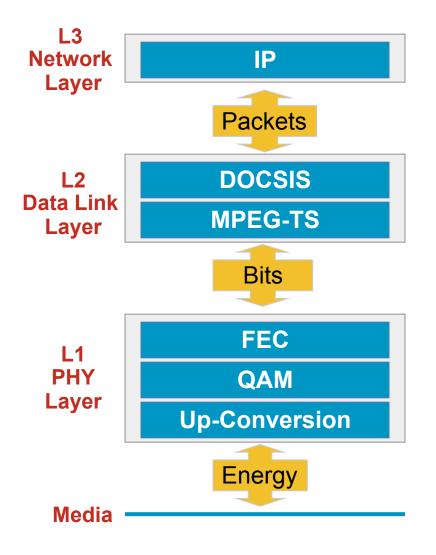
··II·II·I CISCO

John T. Chapman Cisco Fellow Access and Transport Technology Group


What This Presentation Will Cover

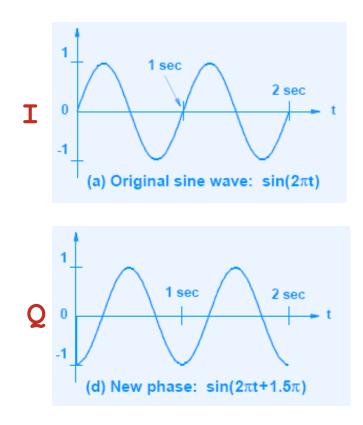
- The PHY Layer on a cable system for digital video and for data/voice/video over IP over DOCSIS.
 - DOCSIS is a L1 through L7 specification for the transmission of IP content over a Hybrid Fiber Coax (HFC) system.
 - PHY layer is defined by "ITU-T J.83 Digital transmission of television signals."

Key concepts:

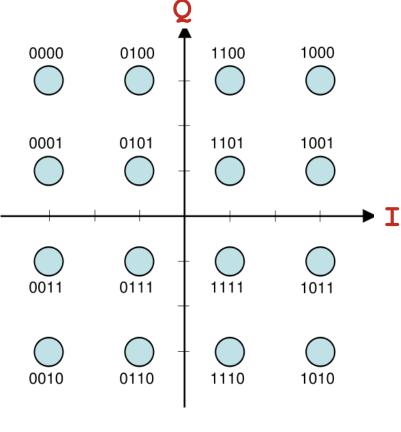
- FEC: Forward Error Correction
- QAM: Quadrature Amplitude Modulation

DOCSIS and the ISO Network Model

Layer 3 is IP


- Layer 2 manages the HFC Cable Plant and converts packets to a bit stream.
- Layer 1 converts bits to energy.

Up-Conversion


- What is meant by energy?
 - Energy can be described in various ways.
 - Amplitude:
 - How much power the signal has.
 - Frequency:
 - Where in the frequency spectrum the signal is.
 - Bandwidth:
 - How much spectral space the signal takes.
- Up-Conversion moves a signal from a baseband intermediate frequency (I.F.) to a RF frequency (R.F.)

Phase as used in Modulation

- Take two sine waves. Call them I and Q.
- Set their baud rate to the same value.
- If you change the starting point of one sine wave compared to the other one, you are changing the relative <u>phase</u> of I and Q.
- By changing <u>phase</u> and <u>amplitude</u> of I and Q, unique combinations called <u>symbols</u> can be created.

QAM: Quadrature Amplitude Modulation

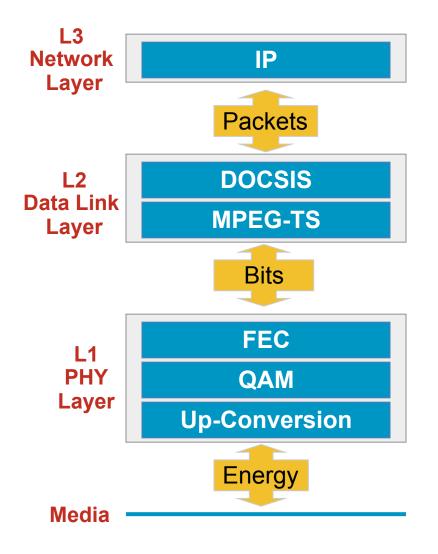
16-QAM Constellation

- A QAM signal is composed of a series of very organized pieces of energy called symbols.
- A collection of symbols is called a constellation.
 - 16-QAM has 16 unique symbols
 - Polar graph shows amplitude and phase of I and Q.
- Each symbol in a constellation is assigned a bit field.
 - 16 symbols map to 4 bits
- Thus, QAM converts <u>bits</u> to <u>energy</u>.

256-QAM

_								-	_							1
¥.	Ŕ	, *.	A\$.	: 9 5	1999-	94 <u>8</u>	ж.	- <u>چن</u> د .	. کلم. چولان	ð,	. 1 4	*	-;.e.	- 685	ų,	ľ
10	- 1	~*	Ξų.	*	,#Š.	: \$ <u>.</u> .	384	ist -	*	1	а н :	5.	*	()a,	- 1	-
R.	ø	.	-4-	à.	.خې:	÷s.	:92	Ť.	`. ₽]`	4	7 2 3		<u>8</u> ,	n¥ć.	×	
ž		.: r .	,8 <u>9</u>	4	2 <u>3</u>	- 4 8	×.	۰×.	×.	¥4-	۳ġ:	жę.	Ę.	-	÷.	
×.,	*	NS.	្ឋ	ų.	<u>ر</u> هر.	્ય	÷.	÷.	*	.×	(in	ŝ,	*	\$	- 4	-
ંગ્ર	35 ⁵	1 74	\$÷	72	itin		:9	÷	. ię.	÷ģi	÷	×.	×	**	÷.	1
10	4	. ¢ ∷	ÿ~	đ.	<i>84</i>	4	֑:		·*;-!	嘲	(95.	÷	*	*.	÷,	1
4	×	.»~	e.	ÿγ	÷.		;\$P	-4	×	Ú.	ŵ,	*	*	ę	3	1
	8	2	*	igus	Š.	Ŵ	3	Ŵ.	Ť.	. (6 5.	*	÷	25	×.	ş,	
¥	3	4	¢۲.	ः अद्	÷	3	۲	£	ia)	% 4	*	. З .	ø	14	*	
1		in .	<i>1</i> 4	s e s	æ	34¢	÷.	<u>8</u>	<u>»</u>	·ä-	¥;.	. <i></i> ¢.	溃	\$¥.	×	1
8	×	· 6-	÷.	\$	•	13	A.	.4	<u>ن</u> م	- \$ -	<i>:</i> #	<u>,</u> #	×	ŵ.	.×	-
*	*	14 ·	4	- <u>5</u> 8-		1	Ŷ	. SI	s,	.÷t	÷	×	18 ¹	¥\$`	×.	1
46	•	· >>,	7 5 5	à.	(\$)	15	÷.	- 17-1	×.	.લ્	že.	*	-84:	SØ.	÷	
4	æ.	ġć:		¥4.	ie:	:35		ж,		ъ.		÷\$7	2	ġь	τ ι α.	-
	-	×.	÷.	١.	ley.	άħ.	Â	4		\$\$			ŵ.,	ș,	4	

256-QAM Constellation (measured)


- J.83 uses 64-QAM and 256-QAM.
- 256-QAM symbol rate is 5.361 million symbols per second (Msps)
 - 256 symbols maps to 8 bits.
- Raw bits per 6 MHz channel:
 - = 8 bits/symbol x 5.360537 Msps
 - = <u>42.88 Mbps</u> per 6 MHz
- RF Density is therefore:
 - = 42.88 Mbps / 6 MHz bandwidth
 - = 7.15 bits per Hertz

FEC: Forward Error Correction

Reed-Solomon Encoder	 Provides block encoding and decoding to correct up to three symbols within an RS block. Adds 6 bits of protection to every 122 bits.
Interleaver	 Evenly disperses the symbols, protecting against a burst of symbol errors from being sent to the RS decoder. This adds a fixed delay, depending upon interleaver depth.
Randomizer	 Randomizes the data on the channel to allow effective QAM demodulator synchronization
Trellis Encoder	Remapping of I and Q LSBs to improve noise immunity.

 FEC consists of a series of techniques which protects bits and can actually recover lost symbols.

DOCSIS and the ISO Network Model

Layer 3 is IP

- Layer 2 manages the HFC Cable Plant and converts packets to a bit stream.
- Layer 1 converts bits to energy.

#