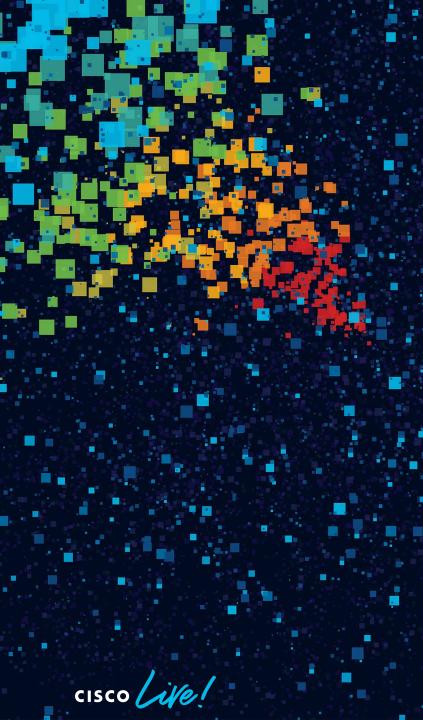


#CiscoLive

Congestion Avoidance/Mitigation. and Capacity Concerns for Cable Subscribers DGTL-BRKSPG-2000


John J. Downey Sr. CMTS Technical Leader

June 2-3, 2020 | ciscolive.com/us

#CiscoLive

cisco

Agenda

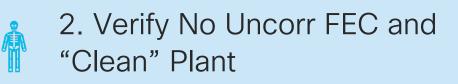
- Session 1
 - Top Seven Steps to Address Capacity Concerns
 - CMTS Suggestions
 - Going Forward & Planning for Next Inevitable Event
- Session 2
 - Laser Clipping Theory
 - Customer Examples
 - > Adding More Upstream Capacity
- Session 3
 - CMTS Optimization, Verification & Troubleshooting
- Note: Over 1 year of traffic growth in less than 1 month!

Layers 1-7 of OSI Model

- Layer 1 Physical
- Layer 2 Data Link
 - Ethernet Frames, Switching
- Layer 3 Network
 - IP Packets, Routing
- Layer 4 Transport
 - TCP/UDP
- Layers 5, 6 & 7 Session, Presentation & Application
- Layer 8 = COST!

cisco / ile

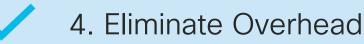
Session 1 Top Seven Steps


cisco ile!

Top Seven Steps to Address Capacity Concerns

C	

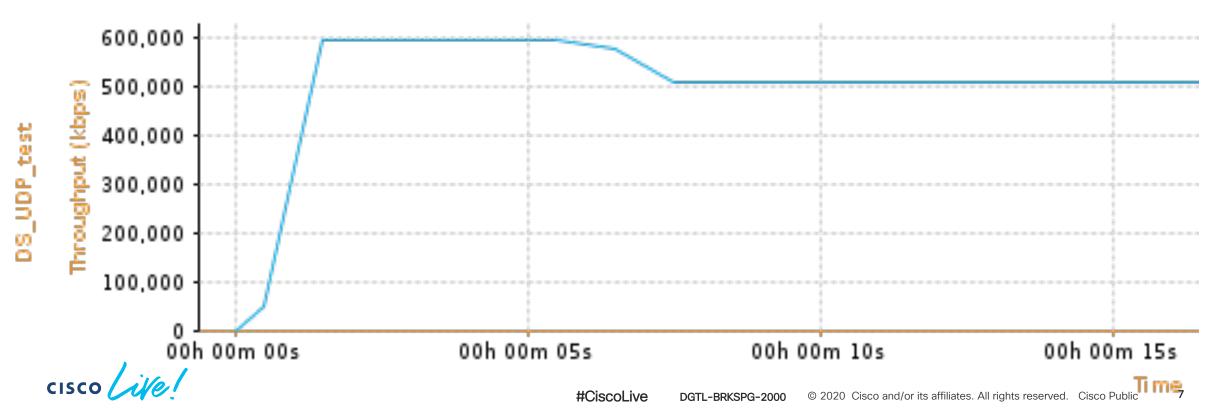
1. Service Group (SG) = 1 Fiber	
Node (FN)	


US Segmentation Physical Node Splits (mxn RPD)

Fix causes of post-FEC errors first, since they = packet loss **Note**: OK to ignore D3.1 correctable codeword errors

BBBCCC<l

Utilize D3.1 as much as possible More spectrum allocation – maybe "steal" from video Utilize/exploit "Powerboosttm"; DS and US

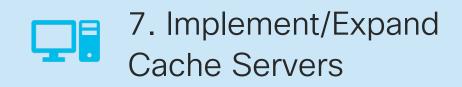


Eliminate some primary DSs Less US chs per MAC domain (maybe more MAC domains) Remove "stale" service flows

DOCSIS 3.0/3.1 DS Capacity

- Can exploit Powerboosttm and peak-rate TLV to satisfy speed test without over-provisioning the typical 10%
- CM file with 510 Mbps max rate, 600 Mbps peak rate, and 70 MB DS max burst
 - > Approximately 6 sec Powerboost achieved

Top Seven Steps (cont)



Cloning – DMIC, BPI+, "Hotlist" Over Use/Abuse – Deep Packet Inspection (DPI) & Subscriber Traffic Management (STM) Arp Attacks, IGMP Joins? – Filters/Access Lists (ACLs), SBRL Expiring Certs – Allow/Deny Lists

6. Optimize CMTS Efficiency& Provide Traffic Priority

Load balancing D3.1 graceful profile management US & DS resiliency/partial mode

Work with content providers to strategically place content storage

OSI Layer 1 – Physical Layer

Split Node	Thanks, Captain Obvious
Segment US	 BDR/EDR makes this easier May need to double mac domains for 1:2 architectures
Add More DOCSIS Channels	Thanks, Captain Semi-Obvious
Add/Increase D3.1	 Increase DS OFDM ch width & implement higher modulation Activate D3.1 US OFDMA
Distributed Access Architectures (DAA) Complement D3.1	 Digital fiber links improve US & DS RxMER No laser clipping!

cisco ile

US Segmentation of 1:2 SG with One Mac Domain

Controller profiles supported now and are more like templates that can be applied to other service groups

cable modulation-profile 224 atdma request 0 16 0 22 16qam scrambler 152 no-diff 32 fixed qpsk1 1 2048 cable modulation-profile 224 atdma initial 5 34 0 48 16qam scrambler 152 no-diff 384 fixed qpsk1 1 2048 cable modulation-profile 224 atdma station 5 34 0 48 16qam scrambler 152 no-diff 384 fixed qpsk1 1 2048 cable modulation-profile 224 atdma a-short 6 76 6 22 64qam scrambler 152 no-diff 64 shortened qpsk1 1 2048 cable modulation-profile 224 atdma a-long 9 232 0 22 64qam scrambler 152 no-diff 64 shortened qpsk1 1 2048 cable modulation-profile 224 atdma a-long 9 232 0 22 64qam scrambler 152 no-diff 64 shortened qpsk1 1 2048

controller Upstream-Cable 1/0/0 us-channel 0 frequency 16000000 us-ch 0 channel-width 6400000 6400000 us-channel 0 docsis-mode atdma us-channel 0 minislot-size 2 us-channel 0 modulation-prof 224 us-channel 0 equalization-coefficient no us-channel 0 shutdown us-channel 1 frequency 22500000 us-ch 1 channel-width 6400000 6400000 us-channel 1 docsis-mode atdma us-channel 1 minislot-size 2 us-channel 1 modulation-profile 224 us-channel 1 equalization-coefficient no us-channel 1 shutdown ! cont

```
controller Upstream-Cable 1/0/1
us-channel 0 frequency 16000000
us-ch 0 channel-width 6400000 6400000
us-channel 0 docsis-mode atdma
us-channel 0 minislot-size 2
us-channel 0 modulation-prof 224
us-channel 0 equalization-coefficient
no us-channel 0 shutdown
us-channel 1 frequency 22500000
us-ch 1 channel-width 6400000 6400000
us-channel 1 docsis-mode atdma
us-channel 1 minislot-size 2
us-channel 1 modulation-profile 224
us-channel 1 equalization-coefficient
no us-channel 1 shutdown
! cont
```

US Segmentation (cont)

interface Cable1/0/0 load-interval 30 down Integrated-Cable 1/0/0 rf-ch 0 down Integrated-Cable 1/0/0 rf-ch 2 down Integrated-Cable 1/0/0 rf-ch 4 ... up 0 Upstream-Cable 1/0/0 us-channel 0 up 1 Upstream-Cable 1/0/0 us-channel 1 up 2 Upstream-Cable 1/0/0 us-channel 2 up 3 Upstream-Cable 1/0/0 us-channel 3 up 8 Upstream-Cable 1/0/1 us-channel 0 up 9 Upstream-Cable 1/0/1 us-channel 1 up 10 Upstream-Cable 1/0/1 us-channel 2 up 11 Upstream-Cable 1/0/1 us-channel 3 cab up 0 power-adjust continue 6 ! Replicate for all USs cab up balance-scheduling cab up max-channel-power-offset 6 cab upstream resiliency sf-move RTPS cab up resiliency sf-move NRTPS cab up resiliency sf-move UGS

cable fiber-node 1 downstream Integrated-Cable 1/0/0 upstream Upstream-Cable 1/0/0

cable fiber-node 2 downstream Integrated-Cable 1/0/0 upstream Upstream-Cable 1/0/1

Notes:

- 16 max USs in domain
- No US bonding across 7/8 boundary
- May have 12 SC-QAM limit per controller pair
- More USs = more DS overhead
- Use D3.1 OFDM DS as primary if "legacy" partial mode used
 - Suggest RBGs & OFDM as secondary-only

cab up resiliency data-burst snr 24 ufec 1 cfec 0 hysteresis 4

Mac Domain Split Example of 1:2 SG

interface Cable1/0/0

load-interval 30 down Integrated-Cable 1/0/0 rf-ch 0 down Integrated-Cable 1/0/0 rf-ch 4 down Integrated-Cable 1/0/0 rf-ch 8 up 0 Upstream-Cable 1/0/0 us-channel 0 up 1 Upstream-Cable 1/0/0 us-channel 1 up 2 Upstream-Cable 1/0/0 us-channel 2 up 3 Upstream-Cable 1/0/0 us-channel 3 cab up 0 power-adjust continue 6 ! Replicate for all USs cab up balance-scheduling cab up max-channel-power-offset 6 cab upstream resiliency sf-move RTPS cab up resiliency sf-move NRTPS cab up resiliency sf-move UGS cab up resil data-burst snr 24 ufec 1 cfec 0 hys 4

interface Cable1/0/1 (or 16) load-interval 30 down Integrated-Cable 1/0/0 rf-ch 2 down Integrated-Cable 1/0/0 rf-ch 6 down Integrated-Cable 1/0/0 rf-ch 10 up 0 Upstream-Cable 1/0/1 us-channel 0 up 1 Upstream-Cable 1/0/1 us-channel 1 up 2 Upstream-Cable 1/0/1 us-channel 2 up 3 Upstream-Cable 1/0/1 us-channel 3

cable fiber-node 1 downstream Integrated-Cable 1/0/0 upstream Upstream-Cable 1/0/0

cable fiber-node 2 downstream Integrated-Cable 1/0/0 upstream Upstream-Cable 1/0/1

Notes:

- More USs available
- More SID space
- Less USs = less DS overhead
- Less initial ranging issues & collisions

cisco ile

More Speed

Use D3.1 (DS & US)

୭

Note: More speed does not mean less latency!

D3.1 US may exhibit even more latency with ping tests

Work being done on LLD cisco Less Overhead

Decrease primary DSs & fewer USs/SG **Note**: DS map overhead ~.4 Mbps for each

US in domain

Trade Video QAMs for More Data Spectrum Take Advantage of Powerboosttm

Typical 10% overprovisioning done to negate differences between layer 2 & layer 3 speed reporting Peak-rate and Powerboost can be used to alleviate Name trademarked

by Comcast

Utilize

peak-

CM

rate

TLV

US Powerboost Can exploit US Max Traffic Burst for US Powerboost

Example of 500x50 Mbps Offering

- Typically set for 550x55 Mbps
- Powerboost could allow
 > 500x50 max rate
 - ≻ 550x60 peak rate
 - ≻ 50x10 MB DS/US max burst
- Provides ~ 8 sec Powerboost

#CiscoLive

DGTL-BRKSPG-2000 © 2020 Cisco and/or its affiliates. All rights reserved. Cisco Public 15

Capacity Overhead

256-QAM, Annex B raw rate = 42.88 Mbps

• <u>1</u> L•	"Usable" refers to layer 2 speed reporting	"Primary" = 37.5 (I-CMTS) 36 Mbps (M-CMTS) 46 Mbps Annex A
	Each US in mac domain can decrease usable by ~.4 Mbps	Worse if no data traffic since all DS MPEG-2 encapsulated Note : D3.1 is not MPEG-2 encapsulated
~	Layer 3 reporting could be 5 - 10% less if average	ge frames < 1518B
Å	"Secondary-only" will be 37.5 Mbps (no DOCSIS	Soverhead)
*	"Secondary-only" will be 37.5 Mbps (no DOCSIS Multicast sent down each "Primary"	Soverhead) Can be removed with; cable downstream dsg disable on Integrated/Modular/Downstream-Cable interfaces
*		Can be removed with; cable downstream dsg disable

^B "Powerboost" and peak-rate TLV affect

cisco ive!

CMTS Suggestions

cisco ile!

CMTS Global Config & General Suggestions

Throttle	Prioritize	Utilize
<pre>Throttle CM Ranging • [no] cable throttle- modem init-rate <1- 1000> holdoff-time <5- 100> flush-rate <100- 1000> • Suggested values; 32 CM/s; 45 sec; 300 CM/s • cab up rate-limit- bwreq exempted- priority <priority> • Sh cab throttle-modem</priority></pre>	 Prioritize Pre- Registration Traffic (config)#cable qos pre-registration us- priority [0-7] DS - "cable service flow priority" (EDCS- 1524683) Note: Setting all BE flows > priority 0 can lead to issues D3.1 CMs may have AQM 	<section-header><section-header></section-header></section-header>

cisco ile!

CMTS Global Config & General Suggestions (cont)

"Stale" Service Flows

cab service flow activity-timeout 300

Add to CMTS global config so flows with no activity > 300 seconds are torn down if CM/eMTA does not do it automatically

DOCSIS 3.0 Voice Bearer Traffic Steering cab docsis30-voice downstream req-attr-mask 0 forbattr-mask 80000000

By default D3.0 DS VoIP is bonded & may cause DS latency or jitter Note: Some CPE exhibit low speed test if VoIP flow also present Note: US voice traffic is never bonded (nor are other scheduled flows)

Manage Service Tiers

When adding faster service tiers be sure to delete old slower ones that are obsolete!

Warning: Slow to fast ratio cannot be more than 1:1000. If it is, the slower rate can constrain the faster rate!

• Note: In case of high minislot allocation (utilization), but low actual traffic, try; cab us-scheduler bwr-drop 20 100

Cable Interface Config Suggestions

Limit Primary DSs	•down Integrated-Cable 1/0/0 rf-ch 0 4
Evenly Distribute US Bonded Traffic	• cab up balance-scheduling
Re-acquire Layer 3 Faster after DS LB & Limit Contention Ranging for D3.0 CMs	•cab up ranging-init-technique 2
Help CM Max Tx Issues	•cab up max-channel-power-offset 6 •cab up n power-adjust cont 6
Provide Faster CM US Updates of Pre-EQ, Levels & MER	• cab up ranging-poll t4-multiplier 2

cisco Live!

Cable Interface Config Suggestions (cont)

Allow	 Allow VoIP Calls to Stay Online if CM Enters US Partial Mode cab upstream resiliency sf-move UGS (NRTPS & RTPS)
Allow	 Allow Fair Sharing of US Traffic Between D3.1 & 3.0 CMs cable upstream qos fairness
Activate	 Activate US Partial Mode Based on Data Burst MER Readings cab up resil data-burst snr 24 ufec 1 cfec 0 hyst 4
Adjust	 Adjust CM Insertion Interval & CM Ranging Opportunities cab insertion-interval auto 120 1000 or (60 480)
Minimize	 Minimize US Collisions w/ Range & Data Back-off Changes cab up x range-backoff 3 6 cab up x data-backoff 3 5 (looking at 5 6)

Going Forward

cisco live!

Planning for That Next Inevitable Event

-		
	_	

Implement subscriber-based subscription model

For quick activation of more channels/capacity

Have segmentable nodes

Future segmentation for quick activation

Implement DAA

Better performance and complementary to D3.1

Thank you

cisco ive!

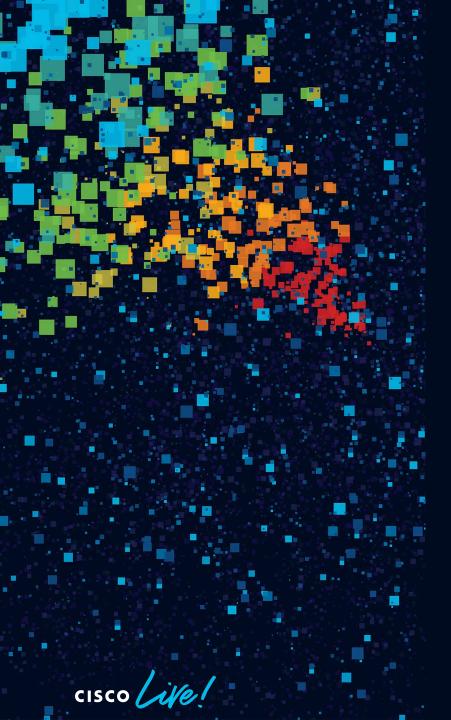
•

#CiscoLive

cisco

#CiscoLive

Congestion Avoidance/Mitigation and Capacity Concerns for Cable Subscribers – Session 2 DGTL-BRKSPG-2000


John J. Downey Sr. CMTS Technical Leader

June 2-3, 2020 | ciscolive.com/us

#CiscoLive

cisco

Agenda

- Session 1
 - Top Seven Steps to Address Capacity Concerns
 - CMTS Suggestions
 - Going Forward & Planning for Next Inevitable Event
- Session 2
 - Laser Clipping Theory
 - Customer Examples
 - Adding More Upstream Capacity
- Session 3
 - CMTS Optimization, Verification & Troubleshooting

Laser Clipping Theory

cisco live!

Laser Clipping Traits

"See" artifacts like second and third order harmonics above diplex filter region

One way to prove signal is an artifact is to turn off original "real" signal or watch spectrogram view, which is time in Z axis

See if artifacts disappear same time signal below 42 MHz disappears or fluctuates

Sometime DS signal leaks on US, so it's actually ingress and not harmonics

Look below 5 MHz and make sure AM or HAM radio not getting into node

Have seen in past where node used special port for power insertion and it wasn't as good as we thought for RF choking

Installed power inserter on RF leg and issue solved

High US Utilization, Types of Applications, & Laser Clipping

More US utilization (Ring doorbell, gaming,...) coupled with applications not using UGS like Vonage, Skype, Zoom and other BE VoIP will increase probability of Request collisions

Suspect customers with audio-only will have more contention requests vs piggyback requests

Video calls would increase US throughput requirements and piggybacking would probably occur more often

DS OTT video and its TCP acks that must be sent on US could be exacerbating the issue

These collisions could lead to laser clipping and dropped packets

Note: Laser clipping would not occur on digital fiber links in distributed access architectures (DAA) like remote-PHY

Verifying BW Request Counters

Following commands used to verify BW requests (contention or piggybacked)

Cannot tell when contention requests actually contend/collide


#sh int cx/y/z sid n count ver | inc BW

- BWReqs {Cont, Pigg, RPoll, Other} : 8306, 3243, 0, 0
- Note: Could use this command to test theory of which applications create more contention Reqs
- Intended for specific CM

#sh contr cx/y/z up n | in Request|Bytes

- Bandwidth Requests = 2776290
- Piggyback Requests = 1077964
- Invalid BW Requests= 195 (more info in notes view)
- Bytes Requested = 256264277
- Bytes Granted = 1626995783
- Command to show per-US counters

need to be same freq, amplitude & phase

CMs have time offsets to keep tight timing alignment, so phase should be aligned as well

CM Ranging Causing Power Spikes

CM on low value tap will normally only need to transmit maybe 35 dBmV and if it ranges it could go as high as 57 dBmV

HE test CMs notorious for this if no proper attenuation added

Utilizing flexible solution taps (FST) with built-in EQs helps alleviate this since CMs all Tx between 40-50 dBmV and will not have large range to ramp up

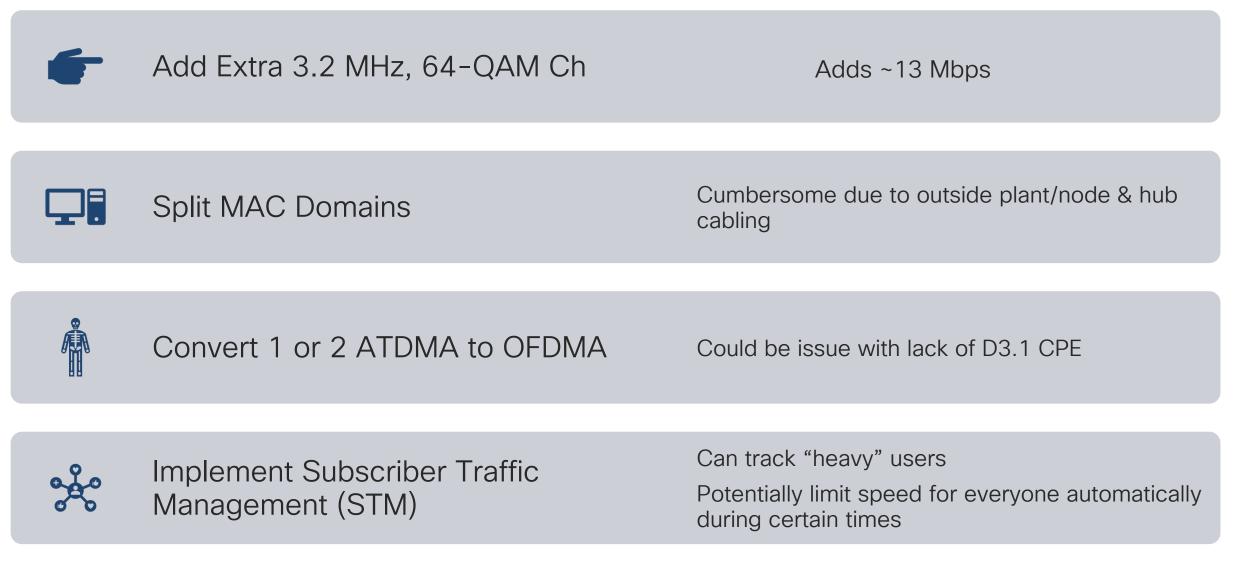
	Note : Concern about CMs in "hotlist" as they will still range	Never show init(r1), but ramping up on every UCD and trying all day long Could be better to let them register & give them cm file with network access disabled
		If so, more time on wire wasted
	Stick with double minislot from default like we suggest and never quadruple it	Dropping it to default minislot of 1 when using 6.4 MHz ch width will not save us anything and could affect US concatenation and per-CM US speed
,		

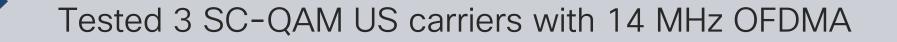
Customer Examples

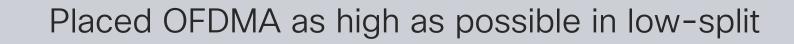
cisco live!

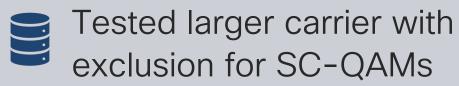
Contention Requests and Laser Clipping

Contention % is amount available for contention


Not amount of contention happening Should be 99-utilization %


If Cont and Utilization % don't add up to 99%, then it's a problem


	Monitor Cont Requests	If low, make sure util + cont = 99% If it doesn't add up, then track specific CMs and figure out why Don't forget scheduled flow utilization – sh cab admission control
		If low and does add up properly, then not much you can do since heavy US traffic is "real"
		Install RPD 😊 – Digital optical link has no laser clipping
菜	Work-around to laser clipping	 Decrease levels into laser by 3-6 dB with expected lower MER! Pad movement from HE to node
		 CMTS config change (-3 to -6 dBmV vs default of 0) Pad and CMTS change (3 dB pad movement from HE to node and -3 dBmV on CMTS)
cisco	Live!	#CiscoLive DGTL-BRKSPG-2000 © 2020 Cisco and/or its affiliates. All rights reserved. Cisco Public 37


One Customer's Mitigation Plans

Adding D3.1 OFDMA US

Found ch impacted due to poor performance of low spectrum and reduced ability to get 1K, 2K QAM

Also tried two OFDMA carriers to allow low spectrum to change modulation independent of upper spectrum

Decided that 14 MHz of continuous spectrum was best due to overhead of 2 chs and overall performance Also tested with 8-10 actives deep

Another Customer's Goals and Plans

Perform as few node splits as possible	
Deployed 96 MHz D3.1 DS OFDM and will add another 96 MHz in congested nodes	 Note: OK to ignore correctable codeword errors
Added OFDMA at bottom end of US spectrum	 With exclusion band for DSG
Considering 204 MHz split with analog or DAA	 Good luck with analog ☺
Considering DMIC to reduce theft of service	

cisco ile

Adding More Upstream Capacity

cisco live!

US Capacity Increase – Adding 5th US Channel

US Max Tx drops by 3 dB once you exceed 4 US chs in TCS

Note: Max Tx is based on modulation of first ch ranged

Note: Bonding done at service flow level, could have some CMs reporting 5-ch TCS

4-ch BG for BE flow & single-ch BG for nRTPS or other flow in cm file

Assuming good amount of 8-ch US capable CMs, suggest 5-ch US BG and just 4-ch BG with 4 best US freqs (chs)

US Capacity Increase - Things to Keep in Mind

More USs in mac domain creates more DS map overhead Could run out of US SC-QAM resources

D3.1 TaFDM not advised because of inefficiencies CMTS processes new CM TLVs (54-56) for US and DS spectrum capability

Note: Some CMs could have capability, but not report it and CMTS will not let it register on intended BG

~.4 Mbps per US

Moving to every 4th DS as Primary helps

CM US Freq Limit

₿

Utilized DOCSIS RLBGs and key off US freq or MTC TLVs

Doesn't help with good CMs with inhouse device that cuts off freq

Also requires lots of RLBG configs on every SG

Abandon SC-QAMs above expected freq cutoff & allocate for D3.1 OFDMA

Still potential issue for D3.1 CMs in house with external bad devices Setting initial ranging (IR) for D3.1 OFDMA much high than expected freq cutoff may help it **not** range and relegate it to D3.0 lower US BG • Not guaranteed since IR is BPSK!

85 MHz US - What Happens with D2.0 CMs That Range on US > 42 MHz?

Best case; register on US freqs < 42 MHz

Next case; range on US > 42 MHz, but fail & then register on US freq < 42 MHz

Worst case; range on US freq > 42 MHz, have enough Tx power to overcome roll-off, pre-eq makes up for in-ch tilt and grp delay, but MER suffers One fix would be DOCSIS Restricted LBGs to force them < 42 MHz • More work and complexity Suggest 3-level dynamic modulation so US can automatically drop down if need be and go back when valid

Drop first US ch past 42 MHz may eliminate need for RLBGs

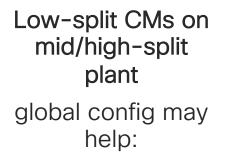
Make sure first ch above 42 is well above, like 58 MHz start freq

Gives enough spectrum for 4, 6.4 MHz chs for an 85 MHz system

85 MHz US - What Happens with D3.0 CMs That Range on US > 42 MHz?

4-ch and 42 MHz filtered CMs can just go to partial mode, but that's not optimum either

Make sure first ch above 42 is well above, like 58 MHz start freq


See later slides - Ways to Avoid Issues with CM US Freq Limit

₿

Even D3.1 solution has some drawbacks in this situation because initial ranging(IR) is so robust at BPSK and fine ranging (FR) at QPSK that CM will register in 3.1 US mode with poor performance

New code will drop to partial mode based on uncorr FEC errors now

Ways to Avoid Issues with CM US Freq Limit

cable us-freq-usecm-cap

Config is supported on 16.7 and 16.10 releases and disabled by default

 Uses CM capability TLV 5.20 to determine if CM supports standard US freq range or ext

Can view TLV 5.20 Under scm

J**hder** scm verbose

sh cab modem <MAC> verbose s US Frequency Range Capability 下 下 一

Note: Command almost always says 5-85 MHz even when it can do higher or is setup to do lower

CM doing 204 MHz but shows 5-85 MHz

CM doing 42 MHz but shows 5-85 MHz

cBR-8 does not allow CM on OFDMA but supports 85 MHz

Command "scm <mac> ver | i MHz" will show that info

CM US Freq Limit (cont)

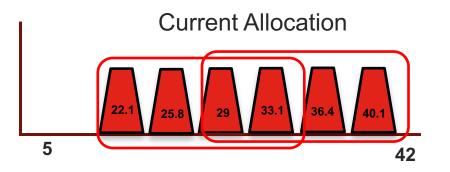
Command limits TCS assigned by CMTS to CM to US chs within supported freq range reported by CM

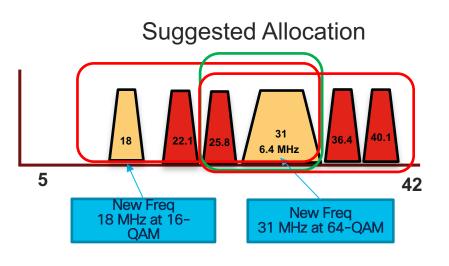
> CM supporting only standard US freq range should not attempt to range on US chs above 42 MHz/65 MHz

Will not help CMs with external devices in house limiting US spectrum

cisco live!

Utilized DOCSIS RLBGs and key off US freq or MTC TLVs


> Doesn't help with good CMs with devices in house that cut off freq


Also requires lots of RLBG configs on every SG; may have limited LBGs Abandon SC-QAMs above expected freq cutoff & allocate for D3.1 OFDMA

Still potential issue for D3.1 CMs in house with external bad devices

- To address this, try setting initial ranging (IR) for D3.1 OFDMA much high than expected freq cutoff so devices that experience issue will never range and would be relegated to D3.0 mode and lower US BG
 - Note: One customer found this to not be the case

Example of Customer US Spectrum Allocation

- More USs = more DS overhead Map traffic, especially if all DSs are primary!
- Wasted money since license is for ch regardless of modulation or ch width
- Use of cable upstream 0 rate-limit can make US appear erratic and not smooth
 - Suggest default cable upstream 0 rate-limit token bucket shaping
- Suggest +3 dBmV config for 6.4 MHz ch
 - MER same as 3.2 MHz chs
 - +3 for 1, 6.4 MHz chs is not much added total power when looking at 22.4 MHz of spectrum
 - Total power would be an increase of .67 dB
- Using middle freq will help with less cable attenuation and "cleaner" plant
- Aggregate speed is not much higher, but D3.0 US bonded speed is much more
 - 4-ch US bonding goes from 4*13 (52 Mbps total) to 3*13+27 = 66 Mbps
 - 27% increase ((66-52)/52)

Thank you

cisco ive!

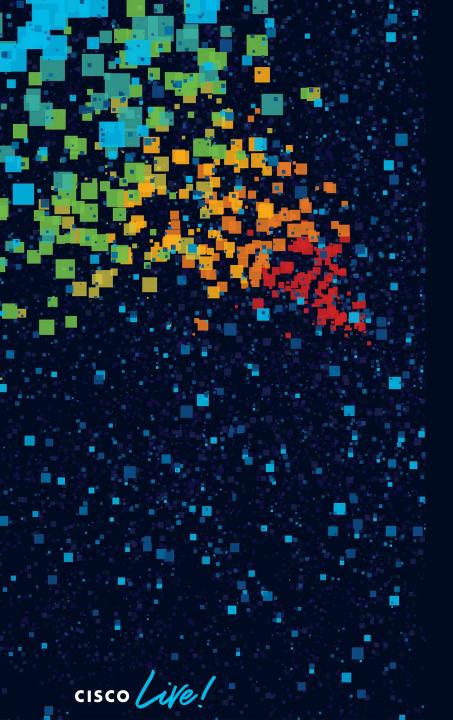
•

#CiscoLive

cisco

#CiscoLive

Congestion Avoidance/Mitigation and Capacity Concerns for Cable Subscribers – Session 3 DGTL-BRKSPG-2000-1


John J. Downey Sr. CMTS Technical Leader

June 2-3, 2020 | ciscolive.com/us

#CiscoLive

cisco

Agenda

- Session 1
 - Top Seven Steps to Address Capacity Concerns
 - CMTS Suggestions
 - Going Forward & Planning for Next Inevitable Event
- Session 2
 - Laser Clipping Theory
 - Customer Examples
 - > Adding More Upstream Capacity
- Session 3
 - CMTS Optimization, Verification & Troubleshooting

CMTS Optimization, Verification & Troubleshooting

cisco i

OSI Layer 2 – Data Link

Ethernet Frames and Switching

Cloning – DMIC, BPI+, "Hotlist" Over Use/Abuse - Deep Packet Inspection (DPI), Subscriber Traffic Management (STM) 1 Denial of Service (DoS) DoS - Arp Attacks, IGMP Joins (too many primary DSs cause issues) Filters/Access Lists (ACLs), SBRL, Expiring Certs -Allow/Deny Lists D3.1 (DS & US) Less Overhead - Decrease Primary DSs, Fewer B More Speed - Actual and Perceived (Powerboost) USs/SG Trade Video QAMs for More Data Spectrum D3.1 US may exhibit even more latency with ping Note: More speed does not mean less latency! tests

cisco live!

Disable Cable Modem Ranging / Registration

- Can stop specific CM from registering with hotlist command
- (config)#cab privacy hotlist ?
 Cm Add cm hotlist
 Manufacturer Add manufacturer hotlist

 - ✓ (config)#cab privacy hotlist manufacturer ?
 LINE Certificate serial number

cbr8#show cable privacy hotlist cm

MAC Address 0000.cadb.2f56 0019.47a0.6038

Last Ranged Dec 10 17:06:45 Dec 10 16:58:26

Type Permanent Permanent

Interface C1/0/0 C1/0/0

OSI Layer 3 - Network

(((p))) •••••	Network	IP Packets Routing
	CPU	SUP Linecard
7	SNMP	
	More Efficient Usage	Load Balance Resiliency/Partial Mode Encapsulation (WIFI, VPN)
,		

Route Processor CPU

• Sh	• Sh Proc cpu sorted 5sec ex 0.00%							
CPU u	tilization f	or five se	conds: 16%/	4%; one	minute	: 13%;	five	e minutes: 12%
PID	Runtime(ms)	Invoked	uSecs	5Sec	1Min	5Min	TTY	Process
149	19869308	3436820	5781	4.15%	3.85%	3.85%	0	CR10K5 Radian Pr
8	529960	89389	5928	1.19%	0.15%	0.08%	0	Check heaps
91	109352	785150	139	0.87%	0.46%	0.12%	0	DHCPD Receive
52	617204	2730778	226	0.63%	0.49%	0.48%	0	Net Background
126	1804728	8159135	221	0.63%	0.39%	0.33%	0	CR10K Request di
134	3804712	616039	6176	0.63%	0.67%	0.67%	0	CR10K5 BCM84754
401	841576	8034391	104	0.47%	0.55%	0.52%	0	L2TP mgmt daemon
33	69472	203568	341	0.47%	0.13%	0.03%	0	ARP Input
139	905896	28229452	32	0.31%	0.24%	0.18%	0	C10K BPE IP Enqu
122	87156	191293	455	0.31%	0.23%	0.11%	0	CMTS SID mgmt ta
102	29500	1755589	16	0.15%	0.11%	0.10%	0	Fault Manager
202	104796	5155843	20	0.15%	0.11%	0.05%	0	IP Input
261	201244	624036	322	0.15%	0.11%	0.10%	0	c10k_periodic_st
343	442032	130862	3377	0.15%	0.09%	0.10%	0	DiagCard0/-1
201	48672	91222	533	0.07%	0.10%	0.03%	0	IP ARP Adjacency
105	59072	360437	163	0.07%	0.11%	0.10%	0	Environment Moni
101	59572	151075	394	0.07%	0.03%	0.02%	0	HC Counter Timer
249	40204	7507403	5	0.07%	0.05%	0.07%	0	DEPI Application
464	55576	1615671	34	0.07%	0.06%	0.02%	0	ReqXmt 7/0: defa
399	56536	756496	74	0.07%	0.10%	0.08%	0	CMTS ACFE Proces

cisco ive!

Route Processor Memory

• Sh processes memory sorted Processor Pool Total: 3390117548 Used: 751121156 Free: 2638996392 I/O Pool Total: 159383552 Used: 62036192 Free: 97347360									
Transient Pool Total: 16777216 Used: 30180 Free: 16747036									
PID	TTY	Allocated		Holding	Getbufs	Retbufs	Process		
0	0	760830360	27206128	672439072	0	0	*Init*		
128	0	110234512	986256	108885136	0	0	C10K SPUMONI SPA		
122	0	32768076	46005896	3308964	0	0	CMTS SID mgmt ta		
109	0	2589136	0	2596284	0	0	Dynamic Services		
0	0	537102124	589493248	2437636	17463660	8504	*Dead*		
126	0	2433801428	3674990568	2189772	0	0	CR10K Request di		
193	0	4214988	2101072	2175064	0		TurboACL		
139	0	221939668	0	1913036	0	0	C10K BPE IP Enqu		
401	0	1857459388	1473683796	1841232	0	0	L2TP mgmt daemon		
163	0	6844604	5007556	1816608	0	0	tENM		
249	0	4243166060	329932572	1111396	0	0	DEPI Application		
28	0	1113848	940	713584	0	0	IPC Seat Control		
0	0	0	0	705312	0	0	*MallocLite*		
201	0	1902088	1544888	590920	0	0	IP ARP Adjacency		
39	0	650224	123800	533572	0	0	Entity MIB API		
9	0	652284	1291868	506648	524232	726180	Pool Manager		
403	0	126282500	126518952	500088	0	0	HCCP LC CTRL		
345	0	489472	3744	471328	0	0	SEA main process		
332	0	8329980	10927544	369296	0	0	CMTS Multicast Q		
1	0	468508	1293972	358704	0	0	Chunk Manager		
241	0	1101504	785128	329524	0	0	IP RIB Update		

cisco ive

Linecard CPU

• Sh	contr c7/	0/0 proc	-cpu sor	ted	ex 0.	00%		
		_	—				; fiv	ve minutes: 26%
PID R	untime(ms)	Invoked	uSecs	5Sec	1Min	5Min	TTY	Process
16	13824104	271753	50870	2.55%	2.12%	2.04%	0	WBCMTS critical
181	7443208	318825	23345	1.19%	1.19%	1.18%	0	SNMP bg sync col
90	715652	272553	2625	0.79%	0.21%	0.50%	0	CMTS MAC Parser
64	4937492	770983	6404	0.79%	0.84%	0.84%	0	DOCSIS Load bala
143	784280	9031731	86	0.23%	0.17%	0.17%	0	IP Input
61	533944	214191	2492	0.23%	0.14%	0.11%	0	CMTS CM MONITOR
77	102584	3671944	27	0.23%	0.22%	0.23%	0	CMTS MAC Timer P
70	171924	350503	490	0.15%	0.08%	0.08%	0	CMTS CHAN STATS
196	442056	112250	3938	0.07%	0.07%	0.07%	0	Compute load avg
65	700052	2055111	340	0.07%	0.13%	0.16%	0	CR10K Request di
198	148408	2272590	65	0.07%	0.07%	0.07%	0	ReqXmt 5/0: defa
205	9448	570609	16	0.07%	0.06%	0.07%	0	HCCP_DATA_KA
• sh	contr c8/	0/0 proc	-cpu sor	ted	ex 0.	00%		
CPU ut	ilization fo	or five sec	onds: 10%/	7%; one	minute	: 10%;	five	e minutes: 10%
PID R	untime(ms)	Invoked	uSecs	5Sec	1Min	5Min	TTY	Process
184	5927116	217342	27270	0.95%	1.01%	1.01%	0	SNMP bg sync col
64	2741024	745642	3676	0.71%	0.70%	0.71%	0	DOCSIS Load bala
16	4265644	271864	15690	0.39%	0.47%	0.49%	0	WBCMTS critical
61	358108	114380	3130	0.15%	0.05%	0.05%	0	CMTS CM MONITOR
77	59508	3523622	16	0.07%	0.05%	0.07%	0	CMTS MAC Timer P
199	438176	108543	4036	0.07%	0.07%	0.07%	0	Compute load avg
70	219028	317086	690	0.07%	0.07%	0.07%	0	CMTS CHAN STATS
146	267164	4109077	65	0.07%	0.04%	0.05%	0	IP Input

cisco live!

Linecard Memory

• sh contr c8/0/0 memory

	Head	Total(b)	Used(b)	Free(b)	Lowest(b)	Largest(b)
Processor	C73EF00	1769738496	454869920	1314868576	1301932116	1299960636
I/O	75F00000	167772160	107608068	60164092	59910688	56092732

Processor memory

Address	Bytes	Prev	Next	Ref	PrevF	NextF	Alloc PC	what
0C73EF00	0000065540	00000000	0C74EF34	001			028542EC	MallocLite
0C74EF34	0000065540	0C73EF00	0C75EF68	000	285FEC2C	0	0294D170	(coalesced)
0C75EF68	0000065540	0C74EF34	0C76EF9C	001			024D2840	SID_INST_CHUNK
0C76EF9C	0000065540	0C75EF68	0C77EFD0	001			023B8BB0	CM_MCTX_CHUNK
OC77EFD0	0000000356	0C76EF9C	0C77F164	001			023FFCD0	CM Flap Info
0C77F164	0000005764	0C77EFD0	0C780818	001			02751228	CMTS_PARSEINFO
0C780818	0000007204	0C77F164	0C78246C	000	287414DC	0	02751228	(fragment)
0C78246C	0000000356	0C780818	0C782600	001			023FFCD0	CM Flap Info
0C782600	0001159332	0C78246C	0C89D6D4	000	28625354	C8A7BA0	02891078	(coalesced)
0C89D6D4	0000000356	0C782600	0C89D868	001			023FFCD0	CM Flap Info
0C89D868	0000040972	0C89D6D4	0C8A78A4	000	0	0	02CE609C	(coalesced)
0C8A78A4	0000000716	0C89D868	0C8A7BA0	001			02F7B47C	CMTS MAC Parser
0C8A7BA0	0012280984	0C8A78A4	0D45E068	000	C782600	0	02891078	(coalesced)
0D45E068	0000020004	0C8A7BA0	0D462EBC	001			0223D8B4	Manage Chnk Q Elemen

cisco lite:

SNMP & Security

- Change polling method to "get exact" wherever possible, for optimal performance
 - > Router(config) #Access-list 199 permit udp host xxx.xxx.xxx any eq snmp
 - ✓ One line for each device polling the box
 - > You then create you class and policy maps:
 - > Router(config)#class-map match-all snmp
 - > Router(config-cmap)#match access-group 199
 - > Router(config-cmap) #policy-map snmp
 - > Router(config-pmap)#class snmp
 - > Router(config) #police 56000 8000 10000 conform-action transmit exceed-action drop
 - > Router(config)#interface GigabitEthernet1/0/0
 - > Router(config-if)#service-policy input snmp
- Recommended ACLs for general security of cable access networks
- IP Unreachables/ICMP Unreachable Rate-Limiting: Blocks IP unreachables / prevents too many sequential ICMP unreachables from being sent when an outside node scan pings subnets and there are addresses that are not being used or users offline.
 - > Router(config) #interface cable 1/0/0
 - > Router(config-if) #no ip unreachables
 - > Router(config) # ip icmp rate-limit unreachable 10000
- Cable ARP Filters: Helps control # of ARP replies and requests being transmitted on cable interfaces. Can be caused by bad devices as well as viruses and worms
 - > Router(config)#interface c1/0/0
 - > Router(config-if)#cable arp filter request-send 3 2
 - > Router(config-if)#cable arp filter reply-accept 3 2
- Cable Modem filters: Recommended filtering in CM config files

1. Configure D2.0 Global Settings

- cab load-balance d20-ggrp-default method utilization
- cab load-balance d20-ggrp-default policy pure-ds-load
- cab load-balance d20-ggrp-default init-tech-list 4
- cab load-balance d20-ggrp-default interval 45
- cab load-balance d20-ggrp-default threshold load 15
- cab load-balance d20-ggrp-default docsis-policy 1
- cab load-balance docsis-enable
- cab load-balance modem max-failures 20
- cab load-balance method-utilization min-threshold 50
- cab load-balance method-utilization cm-hold 900
- cab load-balance rule 1 disable-throughput-lower us 100
- cab load-balance rule 2 disable-throughput-lower ds 500
- cab load-balance docsis-policy 1 rule 1
- cab load-balance docsis-policy 1 rule 2

D2.0 LB Step-by-Step Suggestions

- 2. Make proper RLBGs if necessary
- 3. Configure any "exclude" statements needed
- 4. Config load-interval 30 on all Cab, I, M, & W interfaces
- 5. Configure all fiber nodes
- 6. Use: cab load-balance d20 GLBG auto-generate
 >Note: From exec mode, do wr mem afterward to save all LBGs
- 7. Reboot CMs if already online

Sh cab load-balance docsis-group 800 all | in 36

DOCSIS load-balancing load

Interface	State	Grp	Utilization	Rsvd	NBCM	WB/UB	Flows	Weight
8/0/0:0 (477 MHz)	up	1	10%(10%/92%)	0%	3	9	3	36.0
8/0/0:1 (483 MHz)	up	1	5%(5%/92%)	0%	2	9	2	36.0
8/0/0:10 (537 MHz)) up	1	0%(0%/92%)	0%	2	10	3	36.0
8/0/0:11 (543 MHz)	up	1	0응(0응/92응)	0%	2	10	2	36.0
8/0/0:12 (549 MHz)	up	1	0응(0응/92응)	0%	2	10	2	36.0
8/0/0:13 (555 MHz)) up	1	5%(5%/92%)	0%	2	10	2	36.0
8/0/0:14 (561 MHz)) up	1	0%(0%/92%)	0%	2	10	2	36.0
8/0/0:15 (567 MHz)	up	1	10%(10%/92%)	0%	2	10	4	36.0
8/0/0:2 (489 MHz)	up	1	10%(10%/92%)	0%	2	9	2	36.0
8/0/0:3 (495 MHz)	up	1	5%(5%/92%)	0%	2	9	2	36.0
8/0/0:4 (501 MHz)	up	1	10%(10%/92%)	08	2	9	2	36.0
8/0/0:5 (507 MHz)	up	1	5%(5%/92%)	08	2	9	2	36.0
8/0/0:6 (513 MHz)	up	1	0%(0%/92%)	08	2	9	2	36.0
8/0/0:7 (519 MHz)	up	1	5%(5%/92%)	0%	2	9	2	36.0
8/0/0:8 (525 MHz)	up	1	0응(0응/92응)	0%	2	10	2	36.0
8/0/0:9 (531 MHz)	up	1	0응(0응/92응)	0%	1	10	2	36.0

- Utilization based on "load-interval" with default of 300 sec and suggested lowest setting of 30
 Cable interface setting affects US utilization; Modular/Integrated affects DS utilization
- Policy pure-ds-load recommended when doing DS utilization LB
 - Removes US utilization for DS LB decisions

1. Configure D3.0 Global Settings

- cable load-balance d30-ggrp-default policy pure-ds-load
- cable load-balance d30-ggrp-default init-tech-list 4
- cable load-balance d30-ggrp-default threshold load 20
- cable load-balance d30-ggrp-default interval 30
- cable load-balance d30-ggrp-default docsis-policy 1
- cable load-balance docsis-enable
- cable load-balance docsis30-enable
- cab load-balance modem max-failures 20
- cab load-balance method-utilization min-threshold 50
- cable load-balance method-utilization cm-hold 900
- cab load-balance rule 1 disable-throughput-lower us 100
- cab load-balance rule 2 disable-throughput-lower ds 500
- cab load-balance docsis-policy 1 rule 1
- cab load-balance docsis-policy 1 rule 2

D3.0 LB Step-by-Step Suggestions

- 2. Make proper RLBGs & "exclude" commands if necessary
- 3. Config load-interval 30 on all Cable, I, M, & W interfaces
- 4. Configure cable interface commands
 - > cable upstream balance-scheduling
 - \succ cable up ranging-init-technique 2
- 5. Configure all fiber nodes
- 6. Reboot CMs if already online
 - > Wait for modem-count LB and primary distribution

7. Configure;

- > cab load-balance d30-ggrp-default method util
- > cab load-balance docsis30-enable dynamic down
- > Rebuild all FNs or change all auto-generated D3.0 LBGs to method utilization
- 8. Reboot CMs if already online (may not be needed)

D3.0 Modems Registered in D2.0 Mode

cbr8#show cable modem wideband registered-traditional-docsis IP Address I/F Prim RCC MD-DS-SG/ MAC Address MAC Sid ID MD-US-SG State online(pt) 1270 1 1 / 1 1859.3353.0b18 10.10.0.29 C7/0/1/U0 1859.3353.09b0 10.10.0.18 C7/0/1/U1 online(pt) 1253 1 1 / 1 online(pt) 1255 1 1 / 1 1859.3353.0adc 10.10.0.21 C7/0/1/U3 1859.3353.0ad6 10.10.0.28 C7/0/1/U2 online(pt) 1245 1 1 / 1

- D3.0 CMs "online" are basically in D2.0/single-ch mode
- May not complain because CM is online, but QoS will suffer
- CMs will participate in D2.0 LB
 - Can wreak havoc on load balance
- CMs with high level QoS will "eat" limited capacity and potentially "starve out" legitimate D2.0 CMs
- Note: CMs could be w-online but D2.0 on US
 - > Lose mtc-mode CCF, but gain US LB

cisco live!

Partial Mode & Wideband CM Distribution

- Sh cab modem partial-mode
- Sh cab modem partial-service
- Sh cab modem cm-status
- Sh cab resiliency
- Sh cab modem resiliency
- Sh cab modem wide ch
- Sh cab mac-domain cx/y/z rcc
- Sh cab modem <mac> wide rcs ver

cisco / ille/

DS Partial Mode

- "Trigger" command needed to even process cm-status messages
 - > cab rf-change-trigger percent 50 count 10 secondary
 - "Legacy" resiliency very limited in that CMs in p-online were either sending all their traffic down their primary or forcing everyone to go to less DSs once thresholds met
 - CMs can come out of p-online automatically when a cm-status message reports "good" and can go back to w-online without intervention
 - Plus, it is easier to track CMs listed as p-online
- Use D3.1 OFDM DS as primary if "legacy" partial mode used
 Suggest DBCs & OFDM as accordance only otherwise
 - Suggest RBGs & OFDM as secondary-only otherwise
- cbr8(config-if)#cab cm-status enable ?

<grouplist> CM-STATUS event list to enable

- 3 Sequence out of range
- 6 T4 timeout
- 7 T3 re-tries exceeded
- 8 Successful ranging after T3 re-tries exceeded
- 9 CM operating on battery backup
- 10 CM returned to A/C power

> Only 3 is on by default depending on IOS

Resilient Bonding Groups (RBGs)

- Feature works in conjunction with "trigger" command
 - > Much more flexible
 - > Recommend higher threshold for "trigger" command
 - > Need to keep eye on CMs "thrashing" and CPU affect
- (config)#cable resiliency ds-bonding
- (config)#interface wideband-cable x/y/z:a
 > (config-if)#cable ds-resiliency
- Note: Without "trigger" or RBG, CMs will cycle on/off when cm-status bad
- Once CM picks BG, RBG will not intervene and place it in bigger BG later
 > BGs must be manually created properly and CM should pick biggest it can handle assuming steered properly, if need be
- Note: D3.0/3.1 CMs only use 1 DS as Primary/control ch
 CM only "sees" DS BGs that its Primary is part of depending on attribute command;
 ✓ cable service attribute ds-bonded downstream-type bonding-enabled enforce

> Dynamic Bonding Group (DBG) feature now available to avoid manual BG creation

DS Resiliency and Partial Mode

- (config)#cab rf-change-trig percent 75 count 10 second
- (config)#cab cm-status all holdoff 500 reports 5
- (config)#cab rf-change-dampen-time 90
- (config) #cab acfe enable
- (config)#cab acfe period 60
- (config)#cab acfe guar-bw-sync-period 240
- (config)#cab resiliency ds-bonding
- Configure 4-6 RBGs per controller (more if battery mode used) (config) #interface wideband-cable x/y/z:63 (config-if) #cable ds-resiliency
- Note: RBGs are shared in a pool across 4 controllers

US Partial Mode

- On by default
- Much easier for CMTS to control on US vs DS
 - > CMTS schedules minislots and can mark per-CM US up or down
- scm 1859.334e.82c4 ver

MAC Address IP Address Prim Sid Host Interface MD-DS-SG / MD-US-SG Primary Wideband Channel ID Primary Downstream	: 1859.334e : 10.10.0.2 : 62 : C7/0/4/UE : 1 / 1 : 2726 (Wi7 : 7/0/1:10	210 3 7/0/1:5)	50)	
Wideband Capable	: Y	(11114 . 20)	50)	
UDC Enabled	: N			
Extended Upstream Transmit Power	: OdB			
Multi-Transmit Channel Mode	: Y			
Number of US in UBG	: 4			
Upstream Channel	: US0	US1	US2	US3
Ranging Status	: sta	sta	sta	sta (will show dr if disabled)
Upstream SNR (dB)	: 39.7	39.8	39.3	37.89
Upstream Data SNR (dB)	:			
Received Power (dBmV)	: 0.00	0.00	0.00	-0.50
Reported Transmit Power (dBmV)	: 32.00	32.00	32.00	32.00
Peak Transmit Power (dBmV)	: 51.00	51.00	51.00	51.00

cisco

SCM Partial-Mode & Service

• cbr8#show cable modem partial-mode MAC Address IP Address I/F MAC Prim RCC UP-reason/ Failed-tcs State Sid ID 1859.3353.0b3e 10.10.1.169 C7/0/6/UB p-online(pt) 72 2 N/A 38c8.5cb6.63ca 10.10.1.255 C7/0/6/UB p-online(pt) 78 2 N/A 1859.3353.0a18 10.10.0.228 C7/0/7/UB p-online(pt) 2 1 N/A 1859.3353.09c2 10.10.0.219 C7/0/7/UB p-online(pt) 5 1 N/A • cbr8#show cable modem partial-service MAC Address IP Address I/F MAC DSxUS Impaired Impaired State State DS US 54d4.6ffb.2e1b 40.4.58.23 C7/0/0/p p-online(pt) 2x1 7/0/0:1 0,1,2 7/0/0:2 1859.3353.0b3e 10.10.1.169 C7/0/6/UB p-online(pt) 4x4 7/0/6:16 7/0/6:17 7/0/6:18 7/0/6:19 1859.3353.0a18 10.10.0.228 C7/0/7/UB p-online(pt) 7x4 7/0/7:12 • cbr8#show cable modem 38c8.5cb6.63ca primary-channel MAC Address IP Address MAC Prim Num Primary DS Host

 Interface
 State
 Sid
 CPE
 Downstream
 RfId

 38c8.5cb6.63ca
 10.10.1.255
 C7/0/6/UB
 p-online(pt)
 78
 0
 7/0/6:7
 2071

SCM "mac" Wide RCS-Status

• cbr8#scm 38c8.5cb6.63ca wide rcs-status

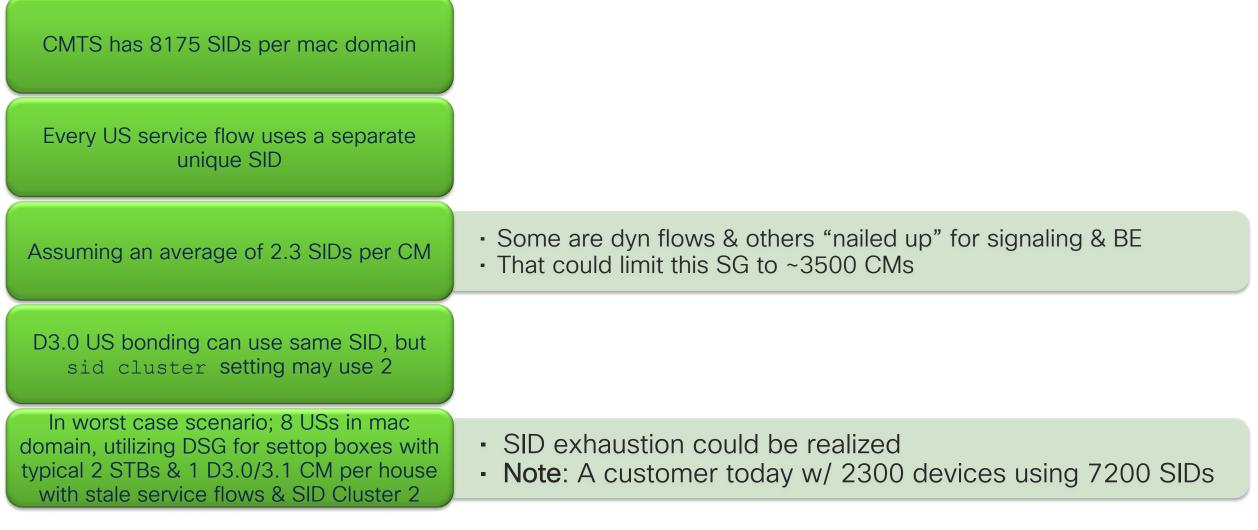
CM : 38c8.5cb6.63ca		RF : 7/0/2 16		
CM : 3808.5006.630a		Status	: DOWN	
RF : 7/0/2 4		FEC/QAM Failure	: 1 Mar 25 18	3:37:15
	: UP	Dup FEC/QAM Failure	: 0	
FEC/QAM Failure		FEC/QAM Recovery	: 0	
Dup FEC/QAM Failure		Dup FEC/QAM Recovery	: 0	
	: 0	MDD Failure	: 0	
~ ~ 1	: 0	Dup MDD Failure	: 0	
	: 0	MDD Recovery	: 0	
	: 0	Dup MDD Recovery	: 0	
1	: 0	Flaps	: 1	
	: 0	Flap Duration	: 12:40	
±	: 0	RF : 7/0/2 17		
±	: 00:00	Status	: DOWN	
		FEC/QAM Failure	: 1 Mar 25 18:	:37:15
RF : 7/0/2 5		Flaps	: 1	
Status	: UP	Flap Duration	: 12:40	
Flap Duration : (00:00	RF : 7/0/2 18		
		Status	: DOWN	
RF : 7/0/2 6		FEC/QAM Failure	: 1 Mar 25 18:	:37:15
	: UP	Flaps	: 1	
Flap Duration	: 00:00	Flap Duration	: 12:40	
Note: Driv		RF : 7/0/2 19		
Note: Pril	mary DS not	Status	: DOWN	
ch	nown	FEC/QAM Failure	: 1 Mar 25 18:	:37:15
31		Flaps	: 1	
cisco ile		Flap Duration #CiscoLive DGTL-BRKSPG-2000 © 2020 Cisco and/or i		o Public 75

Verify Bonded Service Flows

- CMTS bonds the service flow, not modem
- CM can report 8x4 when doing scm wide ch command, but that is the physical chs it is using, not necessarily actual bonding taking place
 - Need to look at service flow ver to verify if BE flow is doing full ch bonding or you have 2 flows using 2, 4-ch BGs
- cbr8#sh cab modem 1855.0ff0.17bd wide ch MAC Address IP Address I/F MAC DSxUS Primary State WB 1855.0ff0.17bd 10.10.2.11 C8/0/0/UB w-online(pt) 16x4 Wi8/0/0:0
- cbr8#sh cab modem 1855.0ff0.17bd service-flow ver | in Forward
 Forwarding interface: Wideband-Cable8/0/0:0 (Problem if it says Integrated)
- cbr8#sh cab modem 1855.0ff0.17bd service-flow ver | in Bonding
 > Upstream Bonding Group : UBG-800

Show Cable Upstream Service-Flow Summary

Interface		(Static	Upstre	eam Serv	vice Fl	OW	Dyna	amic Uj	pstream	Servio	ce Flow	Descrip
	Total	PRI	BE	UGS	UGS-AI	RTPS	N-RTPS	S BE	UGS	UGS-A	D RTPS	N-RTPS	
C6/0/0/ <mark>UB1</mark>	17	17	0	0	0	17	0	0	0	0	0	0	Cell-1
C6/0/0/ <mark>UB2</mark>	17	17	0	0	0	17	0	0	0	0	0	0	Cell-2
C6/0/0/U0	8	4	4	0	0	4	0	0	0	0	0	0	N/A
C7/0/1/U0	7	7	7	0	0	0	0	0	0	0	0	0	
C7/0/1/U1	7	7	7	0	0	0	0	0	0	0	0	0	
C7/0/1/U2	8	8	7	0	0	0	0	0	0	0	0	0	
C7/0/1/U3	7	7	7	0	0	0	0	0	0	0	0	0	
C7/0/1/ <mark>UB0</mark>	1	1	1	0	0	0	0	0	0	0	0	0	
C7/0/4/U0	8	8	8	0	0	0	0	0	0	0	0	0	
C7/0/4/U1	8	8	8	0	0	0	0	0	0	0	0	0	
C7/0/4/U2	8	8	8	0	0	0	0	0	0	0	0	0	
C7/0/4/U3	8	8	8	0	0	0	0	0	0	0	0	0	
C7/0/4/UB714	16	16	16	0	0	0	0	0	0	0	0	0	
C7/0/6/U0	15	15	15	0	0	0	0	0	0	0	0	0	
C7/0/6/U1	15	15	15	0	0	0	0	0	0	0	0	0	
C7/0/6/U2	17	17	17	0	0	0	0	0	0	0	0	0	
C7/0/6/U3	17	17	17	0	0	0	0	0	0	0	0	0	
C7/0/6/ <mark>UB716</mark>	2	2	2	0	0	0	0	0	0	0	0	0	
C7/0/7/U0	10	10	10	0	0	0	0	0	0	0	0	0	
C7/0/7/U1	11	11	11	0	0	0	0	0	0	0	0	0	
C7/0/7/U2	11	11	11	0	0	0	0	0	0	0	0	0	
C7/0/7/UB717	16	16	16	0	0	0	0	0	0	0	0	0	
C8/0/0/U0	7	7	7	0	0	0	0	0	0	0	0	0	
C8/0/0/U1	8	8	8	0	0	0	0	0	0	0	0	0	
C8/0/0/U2	8	8	8	0	0	0	0	0	0	0	0	0	
C8/0/0/U3	9	9	8	0	0	0	0	0	0	0	0	0	
C8/0/0/ <mark>UB800</mark>	17	17	17	0	0	0	0	0	0	0	0	0	
Total:	305	305	303	0	0	0	0	0	0	0	0	0	


cisco ive!

Show Cable Modem TCS Summary

Interface	Cable Modem							
	Total	Reg	Oper	Unreg	Offline	Wideband	TCS	USCB
C1/0/0/U0-1	32	32	32	0	0	32	768	1
C1/0/0/U2-3	94	94	94	0	0	94	3072	2
C1/0/0/U4-5	32	32	32	0	0	32	12288	3
C1/0/0/U6-7	50	50	50	0	0	50	49152	4
C7/0/1/ <mark>U0-3</mark>	16	16	16	0	0	16	3840	711
C7/0/1/U0	7	7	7	0	0	0		
C7/0/1/U1	7	7	7	0	0	0		
C7/0/1/U2	7	7	7	0	0	0		
C7/0/1/U3	8	7	7	1	1	0		
C7/0/7/U0-2	16	16	16	0	0	16	1792	717
C7/0/7/U0	10	10	10	0	0	0		
C7/0/7/U1	11	11	11	0	0	0		
C7/0/7/U2	11	11	11	0	0	0		
C8/0/0/U0-3	17	17	17	0	0	17	3840	800
C8/0/0/U0	7	7	7	0	0	0		
C8/0/0/U1	8	8	8	0	0	0		
C8/0/0/U2	8	8	8	0	0	0		
C8/0/0/U3	9	8	8	1	0	0		
Total:	321	313	313	8	2	67		

cisco ive!

SID Depletion Example

CMTS Utilization Display

```
sh int c1/0/2 mac-scheduler
DOCSIS 1.1 MAC scheduler for Cable1/0/2/U0 : rate 30720000
wfq:None
us_balance:ON
dps:OFF
fairness:OFF
Adv Phy Short Grant Slots 155176, Adv Phy Long Grant Slots 6038475
Adv Phy UGS Grant Slots 0
Avg upstream channel utilization(%data grants) : 1%
Avg upstream channel utilization in 30 sec : 0%
Avg percent contention slots : 98%
Avg percent initial ranging slots : 1%
```

We don't show scheduled traffic here and must use admission control command to get UGS/nRTPS/RTPS utilization

```
> sh cab admission-control interface c1/0/2 upstream 0
Interface Cable1/0/2
Upstream # 0
Upstream Bit Rate (bits per second) = 30720000
Sched Table Rsv-state: Grants 0, Reqpolls 0
Sched Table Adm-state: Grants 0, Reqpolls 0, Util 0%
UGS : 0 SIDs, Reservation-level in bps 0
UGS-AD : 0 SIDs, Reservation-level in bps 0
RTPS : 0 SIDs, Reservation-level in bps 0
BE : 22 SIDs, Reservation-level in bps 0
```

Total Utilization

- Contention percent is (99 (current data% + scheduled%)
 What is available for contention, not current percentage of contention
- Contention% + (Data%+Scheduled%) should add up to 99%
 - Have seen in past with Rate-Adapt (not available on cBR-8) and maybe with DPS (not officially supported yet) where this did not occur
 - Note: Got around misreporting of Data% when Rate-Adapt activated by taking current bps and dividing by estimated "usable" bandwidth for A-Long IUC
- Side Note: Some call this user bandwidth vs channel bandwidth
 > Actual traffic rate in percentage vs ch usage based on time allocation (minislots)
- If cont is low and does add up properly, then not much you can do since heavy US traffic is "real"
- Note: In case of high minislot allocation (utilization), but low actual traffic, try; cab us-scheduler bwr-drop 20 100

Device Count

One original suggestion was no more than 150 to 200 CMs per US

- If doing VoIP, you may want to cut this in half
- However, advances in DOCSIS Phy technology may allow greater US aggregated bandwidth allowing more CMs per US than currently recommended
- Devices such as a digital settops requiring low bandwidth may also be installed and allow more devices to be installed

We also suggested keeping total devices under 1500 per mac domain (cable interface) because of SID space and ranging concerns

Note: Recently modified since we have many Primary DSs per SG

Historically, we had ranging (station maintenance (SM)) at every 20 sec and T4 timer in CM is 30 sec; This only gave 10 sec as worst case scenario for linecard failovers

- After seeing issues in field, changed SM from 20s to every 15s when LC HA used
 - Gives 15s worst case coverage, but creates more SM on DS; but not much traffic
- Side Note: CMs with ! on US Rx level as seen on CMTS are at max TX power and can create fast polling and much more SM messages, which is why I suggest no more than 5% with ! (max Tx)

cisco / Note: Recommended < 8K devices per linecard & < 64K devices max per chassis #CiscoLive DGTL-BRKSPG-2000 © 2020 Cisco and/or its affiliates. All rights reserved. Cisco Public 82

Utilization Tracking

SNMP polling interval for calculating RF ch utilization

- (config)#cab utilinterval ?
 - <1-86400> The time
 interval in seconds (300
 default)

CMTS MIB to monitor DS usage

- CISCO-CABLE-WIDEBAND-MIB > ccwbRFChannelTable > ccwbRFChannelUtilization
- Reports average DS utilization across xx secs of "load-interval"
- Default of 300, but recommend 30 sec
- Remember, no minislots in DS
- For M-CMTS solution with Annex B, 6 MHz ch width using 256-qam, use 36 Mbps as usable rate to figure out what to divide by
- When using this MIB, configure "cab util-interval <n>" value to same value or lower before actual snmp polling interval
- Ex. If snmp polling set to 10 min, can use 9 or 10 for cab util-interval value
- Setting cab util-interval cmd updates interval for ccwbRFChanUtilInterval

Use CMTS MIB to monitor US usage:

- Can use cdxlfUpChannelAvgUtil to monitor avg US channel utilization
- May need to monitor minislot utilization instead since US BW could be available, but no available minislots to send
- cdxIfUpChannelAvgContSlots
- BW utilization is typically in Mbps, so divide by:
- 9 Mbps for 16-qam, 3.2 MHz
- 27 Mbps for 64-qam, 6.4 MHz

Utilization Tracking (cont)

Other similar MIB to monitor DS/US usage	 Use docsIfCmtsChannelUtUtilization to monitor avg US/DS ch utilization US utilization percent reports minislots utilized on physical ch DS utilization percent reports percent of ratio between bytes data transmitted vs total number of bytes transmitted in raw BW of mpeg ch Setting cabl util-interval <n> will update utilization interval for docsIfCmtsChannelUtilizationInterval</n>
In SCF and later, MIB ccwbRFChannelUtilization used for polling RF DS ch utilization for 3Gx60, 20x20V, 8x8V, 3G SPA & WB SPA	 Use ccwbFiberNodeTable to query cable interfaces and RF ch snmp if index
In SCE and later, MIB docsIfCmtsChannelUtUtilization can be used for polling legacy linecards; 5x20, 20x20, WB SPA for RF ch utilization	 MIB ccwbFiberNodeNBIfIndex pointed to DS or US ch of cable interface or integrated/modular cable snmp if index

Battery Mode (BM) Introduction

When feature enabled and CM power outage, CM will enter battery backup mode Bonding downgraded to one DS by one US ch

Battery 1x1 mode (BM)

Reduces power usage when CM running on battery

Longer backup for VoIP and low traffic

When CM returns to AC power mode, ch bonding returns to original configuration

Battery 1x1 Mode Feature Description

 \checkmark

CM use CM-STATUS to report event 9 "CM on battery backup" and event 10 "CM returned to AC power" to CMTS Single-ch US BG & 1ch DS grp needed to move CM to 1x1

For US, each US ch has default single-ch BG

For DS, RBGs need to be configured

Feature uses DBC to move CM from original BG to 1x1

CMTS uses saved info to restore CM to original BG when power restored

Energy Management Feature Description

Low power mode referred to as "Energy Management 1x1 Mode"

- CM must support feature & be enabled in cm file along with user-configurable thresholds
- CMTS uses DBC to instruct CM to enter/exit Energy Management 1x1 Mode
- EM feature uses Resilient BGs for DS and default single-ch US BGs for US
- CMTS selects one available US BG which has max BW available

CM instructed by CMTS via DBC to switch to RCS containing single DS ch & TCS containing single US ch to operate in EM 1x1 Mode during "idle" times

 Data rate demand of that user can be satisfied by available capacity on single US and DS ch pair it is assigned

When CM requires higher data rate, CMTS instructs CM to return to original RCS/TCS set

When CM enters EM mode, CMTS saves original wideband interface and US TCS

When CM exits EM mode, it returns to original wideband interface and US ch sets Note: Battery Backup 1x1 Mode is independent, more simplified feature from EM mode & requires cm-status messages 9 & 10 to be processed

Show Controller Output

 cBR8#sh contr integrated-Cable 2/0/0 counter rf-channel 									
Control	RF	MPEG	MPEG	MPEG	Sync	MAP/UCD	User		
	Chan	Packets	bps	Mbps	Packets	Packets	Mbps		
		Τx			Тх	Tx			
2/0/0	0	112337733	07 38809667	38.80	43539665	1743367624	35.68		
2/0/0	1	112335562	86 38809667	38.80	0	217697	37.81		
• • • • • •									
2/0/0	7	112335562	82 38809667	38.80	0	217697	37.81		
2/0/0	8	112337730	68 38809667	38.80	43539665	1742875987	35.68		
2/0/0	9	112335562	95 38809667	38.80	0	217696	37.81		
2/0/0	10	112335562	91 38809667	38.80	0	217697	37.81		
• • • • •									
2/0/0	31	112335562	99 38809667	38.80	0	217697	37.80		
• cBR8#sh contr integrated-Cable 2/0/0 counter ofdm-ch									
		ofile/PLC				Utilization	n(%)		
2/0/0 1	58 To	tal		-	1512.226	100.0	. ,		
	58 0			1129641	0.005720	0.0			
	58 1				1512.133	100.0			
2/0/0 1	582		2222428 9	1837370	0.001600	0.0			

6530949 58560842 0.010761

0

0

0.00000

0.00000

2/0/0 158 PLC-EM 0 2/0/0 158 PLC-TR 0 cisco ile

2/0/0 158 PLC-MMM

Controller Upstream-Cable 1/0/0

- us-channel 0 frequency 16000000
- us-channel 0 channel-width 6400000 6400000
- us-channel 0 threshold snr-profiles 24 19
- us-channel 0 threshold corr-fec 0
- us-channel 0 threshold hysteresis 4
- us-channel 0 docsis-mode atdma
- us-channel 0 minislot-size 2
- us-channel 0 modulation-prof 224 223 222
- us-channel 0 equalization-coefficient
- no us-channel 0 shutdown
- Note: upstream channels 1 2 & 3 at 22500000, 29000000, 35500000

References

cisco ive!

References – Internal BNE Web Page

- <u>http://stugots.cisco.com/SystemTest/BNE-Library.shtml</u>
- <u>http://stugots.cisco.com/rr/BNE-KnowledgeBase/Misc_PPTs/CBR-8_Lessons_Learned_7-28-16.pptx</u>
- <u>http://stugots.cisco.com/rr/BNE-</u>
 <u>KnowledgeBase/Misc_PPTs/CMTS_&_CM_Impairment_Mitigation_Technigues_2-28-18.pptx</u>
- <u>http://stugots.cisco.com/rr/BNE-KnowledgeBase/Misc_PPTs/CMTS_&_RF_Troubleshooting_10-19-16.pptx</u>
- <u>http://stugots.cisco.com/rr/BNE-KnowledgeBase/Misc_PPTs/CMTS_Operation_Monitoring_11-18-16.pptx</u>
- <u>http://stugots.cisco.com/rr/BNE-KnowledgeBase/D3%230__DS_Bonding/DS_Resiliency_1-23-2020.pptx</u>
- <u>http://stugots.cisco.com/rr/BNE-KnowledgeBase/Misc_PPTs/One_Domain_per_SG_vs_Two_2-7-2020.pptx</u>
- <u>http://stugots.cisco.com/rr/BNE-KnowledgeBase/Throughput/DOCSIS_DS&US_Speed_Playbook_8-5-16.ppt</u>
 - Many of other resources under Throughput Section
- <u>http://stugots.cisco.com/rr/BNE-KnowledgeBase/D3%231/cBR-8_OFDMA_Configuration_3-2020.pptx</u>
 - Many of other resources under D3.1 Section
- Understanding US Ranging
 - <u>http://stugots.cisco.com/rr/BNE-KnowledgeBase/Articles/CM_Upstream_Ranging_4-22-17.doc</u>
 - <u>http://stugots.cisco.com/rr/BNE-KnowledgeBase/Articles/Modem_Provisioning_3-20-2020.doc</u>

Top Closing Points

- If you build it, they will use it
 > Bigger "pipes" are always better
- Always start with Layer 1 for troubleshooting
 - > Eliminate as many variables as possible wifi, VPN, speed test site
 - ➢ Be proactive vs reactive
 - ✓ Use all available tools like PNM, FBC, CMTS & CM info, SNMP, Flaplist, ...
- Take advantage of all CMTS features to provide most efficient service to your customers with self-healing capabilities
 - Don't cut off you nose to spite your face! by saying, "I don't want to make it too good or my techs won't fix anything"!
 - ✓ Learn to monitor more and educate everyone
- Build in headroom and contingency plans

> Hope for the best, but plan for the worst

Thank you

cisco ive!

•

#CiscoLive

cisco

#CiscoLive